Abstract

A single frequency wafer-fused semiconductor disk laser at 1.56 µm with 1 watt of output power and a coherence length over 5 km in fiber is demonstrated. The result represents the highest output power reported for a narrow-line semiconductor disk laser operating at this spectral range. The study shows the promising potential of the wafer fusion technique for power scaling of single frequency vertical-cavity lasers emitting in the 1.3-1.6 µm range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Okhotnikov, “Semiconductor disk lasers,” in Physics and Technology (Wiley-VCH, 2010).
  2. A. Maclean, R. Birch, P. Roth, A. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B26(12), 2228–2236 (2009).
    [CrossRef]
  3. S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
    [CrossRef]
  4. N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
    [CrossRef]
  5. H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
    [CrossRef]
  6. A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
    [CrossRef]
  7. A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
    [CrossRef]
  8. A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
    [CrossRef]
  9. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
    [CrossRef]
  10. A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
    [CrossRef] [PubMed]
  11. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
    [CrossRef]
  12. S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz,” Opt. Express19(8), 7077–7083 (2011).
    [CrossRef] [PubMed]
  13. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser,” Opt. Express18(14), 14627–14636 (2010).
    [CrossRef] [PubMed]
  14. F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
    [CrossRef]
  15. M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
    [CrossRef]
  16. R. Abram, K. Gardner, E. Riis, and A. Ferguson, “Narrow linewidth operation of a tunable optically pumped semiconductor laser,” Opt. Express12(22), 5434–5439 (2004).
    [CrossRef] [PubMed]
  17. Y. Kaneda, M. Fallahi, J. Hader, J. V. Moloney, S. W. Koch, B. Kunert, and W. Stoltz, “Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser,” Opt. Lett.34(22), 3511–3513 (2009).
    [CrossRef] [PubMed]
  18. B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
    [CrossRef] [PubMed]
  19. A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).
  20. C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
    [CrossRef]
  21. H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
    [CrossRef]
  22. H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
    [CrossRef]
  23. H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
    [CrossRef]
  24. H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett.30(17), 2260–2262 (2005).
    [CrossRef] [PubMed]
  25. J. Lyytikäinen, J. Rautiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “1.3-microm optically-pumped semiconductor disk laser by wafer fusion,” Opt. Express17(11), 9047–9052 (2009).
    [CrossRef] [PubMed]
  26. J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
    [CrossRef]
  27. J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion,” Opt. Express16(26), 21881–21886 (2008).
  28. A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express18(21), 21645–21650 (2010).
  29. A. Rantamäki, J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser,” Opt. Express20(8), 9046–9051 (2012).
    [CrossRef] [PubMed]
  30. A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).
  31. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
    [CrossRef]
  32. M. Guina, T. Leinonen, A. Härkönen, and M. Pessa, “High-power disk lasers based on dilute nitride heterostructures,” New J. Phys.11(12), 125019 (2009).
    [CrossRef]
  33. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express14(13), 6069–6074 (2006).
    [CrossRef] [PubMed]
  34. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
    [CrossRef]
  35. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
    [CrossRef]
  36. M. van Exter, S. Kuppens, and J. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron.28(3), 580–584 (1992).
    [CrossRef]
  37. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
    [CrossRef]
  38. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
    [CrossRef]
  39. J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
    [CrossRef]
  40. S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
    [CrossRef]
  41. A. Garnache, M. Myara, A. Laurain, A. Bouchier, J. Perez, P. Signoret, I. Sagnes, and D. Romanini, “Single frequency free-running low noise compact extended-cavity semiconductor laser at high power level,” Proc. Int. Conf. Space Opt. S17, 257–258 (2008). http://www.congrexprojects.com/icso/2008-proceedings-ppts .

2012 (3)

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).

A. Rantamäki, J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser,” Opt. Express20(8), 9046–9051 (2012).
[CrossRef] [PubMed]

2011 (4)

S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz,” Opt. Express19(8), 7077–7083 (2011).
[CrossRef] [PubMed]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

2010 (2)

2009 (5)

2008 (3)

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion,” Opt. Express16(26), 21881–21886 (2008).

2007 (2)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

2006 (2)

R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express14(13), 6069–6074 (2006).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

2005 (6)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett.30(17), 2260–2262 (2005).
[CrossRef] [PubMed]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

2004 (6)

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

R. Abram, K. Gardner, E. Riis, and A. Ferguson, “Narrow linewidth operation of a tunable optically pumped semiconductor laser,” Opt. Express12(22), 5434–5439 (2004).
[CrossRef] [PubMed]

2002 (1)

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

2000 (1)

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
[CrossRef]

1992 (1)

M. van Exter, S. Kuppens, and J. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron.28(3), 580–584 (1992).
[CrossRef]

1991 (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
[CrossRef]

1986 (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Abram, R.

Alabedra, R.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Ambacher, O.

Barat, D.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

Beaudoin, G.

Bellon, M.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Bengtsson, J.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
[CrossRef]

Birch, R.

Burns, D.

A. Maclean, R. Birch, P. Roth, A. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B26(12), 2228–2236 (2009).
[CrossRef]

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Caliman, A.

Calvez, S.

S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Camargo, F.

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

Cerda-Mendez, E.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

Cerutti, L.

A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

Czyszanowski, T.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

Dainese, M.

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

Dawson, M.

S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Dion, J.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

Domenech, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Erbert, G.

Fallahi, M.

Ferguson, A.

Gabrysch, M.

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

Gardner, K.

Garnac, A.

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

Garnache, A.

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser,” Opt. Express18(14), 14627–14636 (2010).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

Genty, F.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

Georges, P.

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Gerster, E.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
[CrossRef]

Gosalbes, J. M.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Guina, M.

M. Guina, T. Leinonen, A. Härkönen, and M. Pessa, “High-power disk lasers based on dilute nitride heterostructures,” New J. Phys.11(12), 125019 (2009).
[CrossRef]

S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

Gulden, K. H.

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

Hader, J.

Härkönen, A.

M. Guina, T. Leinonen, A. Härkönen, and M. Pessa, “High-power disk lasers based on dilute nitride heterostructures,” New J. Phys.11(12), 125019 (2009).
[CrossRef]

Hastie, J.

S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Hopkins, J.

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Hu, Y.

Iakovlev, V.

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

Jacquemet, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Janicot, S.

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

Kaneda, Y.

Kapon, E.

Kaspar, S.

Kemp, A.

A. Maclean, R. Birch, P. Roth, A. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B26(12), 2228–2236 (2009).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Koch, S. W.

Köhler, K.

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
[CrossRef]

Kunert, B.

Kuppens, S.

M. van Exter, S. Kuppens, and J. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron.28(3), 580–584 (1992).
[CrossRef]

Laakso, N.

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

Larsson, A.

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett.30(17), 2260–2262 (2005).
[CrossRef] [PubMed]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
[CrossRef]

Laurain, A.

A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser,” Opt. Express18(14), 14627–14636 (2010).
[CrossRef] [PubMed]

Leinonen, T.

M. Guina, T. Leinonen, A. Härkönen, and M. Pessa, “High-power disk lasers based on dilute nitride heterostructures,” New J. Phys.11(12), 125019 (2009).
[CrossRef]

Leroy, L.

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

Liau, Z. L.

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
[CrossRef]

Lindberg, H.

H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett.30(17), 2260–2262 (2005).
[CrossRef] [PubMed]

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
[CrossRef]

Lucas-Leclin, G.

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Lyytikäinen, J.

A. Rantamäki, J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser,” Opt. Express20(8), 9046–9051 (2012).
[CrossRef] [PubMed]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

J. Lyytikäinen, J. Rautiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “1.3-microm optically-pumped semiconductor disk laser by wafer fusion,” Opt. Express17(11), 9047–9052 (2009).
[CrossRef] [PubMed]

J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion,” Opt. Express16(26), 21881–21886 (2008).

Maclean, A.

A. Maclean, R. Birch, P. Roth, A. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B26(12), 2228–2236 (2009).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
[CrossRef]

Manz, C.

Marin, F.

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
[CrossRef]

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
[CrossRef]

Mereuta, A.

Moloney, J. V.

Moser, M.

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

Myara, M.

A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser,” Opt. Express18(14), 14627–14636 (2010).
[CrossRef] [PubMed]

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Okhotnikov, O.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express18(21), 21645–21650 (2010).

S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion,” Opt. Express16(26), 21881–21886 (2008).

Okhotnikov, O. G.

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Orsal, B.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Oudar, J.

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

Ouvrard, A.

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

Paschotta, R.

Perez, J. P.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Pessa, M.

M. Guina, T. Leinonen, A. Härkönen, and M. Pessa, “High-power disk lasers based on dilute nitride heterostructures,” New J. Phys.11(12), 125019 (2009).
[CrossRef]

Peters, A.

Peyghambarian, N.

Ranta, S.

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

Rantamäki, A.

Rattunde, M.

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

Rautiainen, J.

A. Rantamäki, J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser,” Opt. Express20(8), 9046–9051 (2012).
[CrossRef] [PubMed]

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

J. Lyytikäinen, J. Rautiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “1.3-microm optically-pumped semiconductor disk laser by wafer fusion,” Opt. Express17(11), 9047–9052 (2009).
[CrossRef] [PubMed]

J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion,” Opt. Express16(26), 21881–21886 (2008).

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
[CrossRef]

Riis, E.

Romanini, D.

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

Rösener, B.

Roth, P.

Rouillard, Y.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

Sagnes, I.

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser,” Opt. Express18(14), 14627–14636 (2010).
[CrossRef] [PubMed]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

Sahm, A.

Schiemangk, M.

Schulz, N.

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

Signoret, P.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Sirbu, A.

Smith, S.

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

Sopra, F. M.

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

Spießberger, S.

Stoltz, W.

Strassner, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett.30(17), 2260–2262 (2005).
[CrossRef] [PubMed]

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
[CrossRef]

Symonds, C.

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

Tavast, M.

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

Toikkanen, L.

Töpper, T.

Tourrenc, J. P.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

Tränkle, G.

Valentine, G.

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

van Exter, M.

M. van Exter, S. Kuppens, and J. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron.28(3), 580–584 (1992).
[CrossRef]

Vicet, A.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

Viciani, S.

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

Volet, N.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

Wagner, J.

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

Walczak, J.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

Wasiak, M.

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

Wenzel, H.

Wicht, A.

Woerdman, J.

M. van Exter, S. Kuppens, and J. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron.28(3), 580–584 (1992).
[CrossRef]

Adv. Opt. Technol. (1)

A. Sirbu, N. Volet, A. Mereuta, J. Lyytikäinen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, and A. Caliman, “Wafer-fused optically pumped VECSELs emitting in the 1310-nm and 1550-nm wavebands,” Adv. Opt. Technol.2011, 209093 (2011).

Appl. Phys. B (1)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency CW vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000).
[CrossRef]

Electron. Lett. (3)

H. Lindberg, M. Strassner, E. Gerster, and A. Larsson, “0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm,” Electron. Lett.40(10), 601–602 (2004).
[CrossRef]

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner, L. Leroy, and J. Oudar, “High performance 1.55 µm vertical external cavity surface emitting laser with broad-band integrated dielectric-metal mirror,” Electron. Lett.40(12), 734–735 (2004).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

IEEE J. Quantum Electron. (5)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron.22(11), 2070–2074 (1986).
[CrossRef]

M. van Exter, S. Kuppens, and J. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron.28(3), 580–584 (1992).
[CrossRef]

A. Kemp, G. Valentine, J. Hopkins, J. Hastie, S. Smith, S. Calvez, M. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron.41(2), 148–155 (2005).
[CrossRef]

A. Kemp, J. Hopkins, A. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis,” IEEE J. Quantum Electron.44(2), 125–135 (2008).
[CrossRef]

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1126–1134 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005).
[CrossRef]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett.17(9), 1827–1829 (2005).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “InP-based optically pumped VECSEL operating CW at 1550 nm,” IEEE Photon. Technol. Lett.16(2), 362–364 (2004).
[CrossRef]

H. Lindberg, M. Strassner, J. Bengtsson, and A. Larsson, “High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader,” IEEE Photon. Technol. Lett.16(5), 1233–1235 (2004).
[CrossRef]

J. Lyytikäinen, J. Rautiainen, A. Sirbu, V. Iakovlev, N. Laakso, S. Ranta, M. Tavast, E. Kapon, and O. Okhotnikov, “High-power 1.48-µm wafer-fused optically pumped semiconductor disk laser,” IEEE Photon. Technol. Lett.23(13), 917–919 (2011).
[CrossRef]

J. Lightwave Technol. (2)

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009).
[CrossRef]

N. Schulz, J. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers,” Laser Photon. Rev.2(3), 160–181 (2008).
[CrossRef]

New J. Phys. (1)

M. Guina, T. Leinonen, A. Härkönen, and M. Pessa, “High-power disk lasers based on dilute nitride heterostructures,” New J. Phys.11(12), 125019 (2009).
[CrossRef]

Opt. Commun. (1)

S. Viciani, M. Gabrysch, F. Marin, F. M. Sopra, M. Moser, and K. H. Gulden, “Lineshape of a vertical cavity surface emitting laser,” Opt. Commun.206(1), 89–97 (2002).
[CrossRef]

Opt. Express (9)

R. Abram, K. Gardner, E. Riis, and A. Ferguson, “Narrow linewidth operation of a tunable optically pumped semiconductor laser,” Opt. Express12(22), 5434–5439 (2004).
[CrossRef] [PubMed]

R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express14(13), 6069–6074 (2006).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-µm using wafer fusion,” Opt. Express16(26), 21881–21886 (2008).

J. Lyytikäinen, J. Rautiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “1.3-microm optically-pumped semiconductor disk laser by wafer fusion,” Opt. Express17(11), 9047–9052 (2009).
[CrossRef] [PubMed]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser,” Opt. Express18(14), 14627–14636 (2010).
[CrossRef] [PubMed]

A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express18(21), 21645–21650 (2010).

S. Spießberger, M. Schiemangk, A. Sahm, A. Wicht, H. Wenzel, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz,” Opt. Express19(8), 7077–7083 (2011).
[CrossRef] [PubMed]

A. Rantamäki, J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser,” Opt. Express20(8), 9046–9051 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. SPIE (3)

F. Camargo, S. Janicot, I. Sagnes, A. Garnache, P. Georges, and G. Lucas-Leclin, “Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm,” Proc. SPIE8242, 82420F (2012).
[CrossRef]

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Mendez, “2–2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External–cavity VCSELs, DFB,” Proc. SPIE6184, 61840N, 61840N-15 (2006).
[CrossRef]

A. Laurain, L. Cerutti, M. Myara, and A. Garnache, “2.7 µm single-frequency TEM00 operation of Sb-based diode-pumped external-cavity VCSEL,” Proc. SPIE8242, 82420 L –82421 (2012).

Other (2)

O. Okhotnikov, “Semiconductor disk lasers,” in Physics and Technology (Wiley-VCH, 2010).

A. Garnache, M. Myara, A. Laurain, A. Bouchier, J. Perez, P. Signoret, I. Sagnes, and D. Romanini, “Single frequency free-running low noise compact extended-cavity semiconductor laser at high power level,” Proc. Int. Conf. Space Opt. S17, 257–258 (2008). http://www.congrexprojects.com/icso/2008-proceedings-ppts .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the laser cavity. HR: high reflective; RoC: radius of curvature.

Fig. 2
Fig. 2

Output power in single frequency regime as a function of pump power at two gain element temperatures. The output spectrum and the output beam at the highest output power are shown in the inset.

Fig. 3
Fig. 3

Scanning Fabry-Perot spectrum taken at output power of 950 mW. The free-spectral range of the FPI is 1.5 GHz. A close-up of the 18 MHz (FWHM) line is shown in the inset.

Fig. 4
Fig. 4

Delayed self-heterodyne interferometer spectrum taken at output power of 600 mW. In red: theoretical fitting.

Metrics