Abstract

We implement an experimental technique enabling to study the transient buildup of the optical power spectrum in a Raman fiber laser. We investigate the way through which the laser optical power spectrum broadens before reaching its shape at steady-state.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
    [CrossRef]
  2. J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
    [CrossRef]
  3. P. Suret, A. Picozzi, and S. Randoux, “Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers,” Opt. Express19, 17852–17863 (2011).
    [CrossRef] [PubMed]
  4. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, 1729–1738 (2007).
    [CrossRef]
  5. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
    [CrossRef]
  6. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36, 790–792 (2011).
    [CrossRef] [PubMed]
  7. E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
    [CrossRef]
  8. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1058 (2007).
    [CrossRef] [PubMed]
  9. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37, 500–502 (2012).
    [CrossRef] [PubMed]
  10. B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A79, 063840 (2009).
    [CrossRef]
  11. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285, 2154–2160 (2012).
    [CrossRef]
  12. N. Dalloz, S. Randoux, and P. Suret, “Influence of dispersion of fiber Bragg grating mirrors on formation of optical power spectrum in Raman fiber lasers,” Opt. Lett.35, 2505–2507 (2010).
    [CrossRef] [PubMed]
  13. B. Burgoyne, N. Godbout, and S. Lacroix, “Transient regime in a nth-order cascaded CW Raman fiber laser,” Opt. Express12, 1019–1024 (2004).
    [CrossRef] [PubMed]
  14. S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
    [CrossRef]
  15. V. Karalekas, J. D. Ania-Castan, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15, 16690–16695 (2007).
    [CrossRef] [PubMed]

2012

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
[CrossRef]

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285, 2154–2160 (2012).
[CrossRef]

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37, 500–502 (2012).
[CrossRef] [PubMed]

2011

2010

2009

B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A79, 063840 (2009).
[CrossRef]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
[CrossRef]

2007

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

2005

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
[CrossRef]

2004

Ania-Castan, J. D.

Babin, S. A.

Barviau, B.

B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A79, 063840 (2009).
[CrossRef]

Bortolozzo, U.

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
[CrossRef]

Brinkmeyer, E.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
[CrossRef]

Burgoyne, B.

Churkin, D. V.

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285, 2154–2160 (2012).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24, 1729–1738 (2007).
[CrossRef]

Cierullies, S.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Dalloz, N.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

El-Taher, A.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

Falkovich, G.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Godbout, N.

Harper, P.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

V. Karalekas, J. D. Ania-Castan, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15, 16690–16695 (2007).
[CrossRef] [PubMed]

Ismagulov, A. E.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1058 (2007).
[CrossRef] [PubMed]

Kablukov, S. I.

Karalekas, V.

Kibler, B.

B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A79, 063840 (2009).
[CrossRef]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1058 (2007).
[CrossRef] [PubMed]

Krause, M.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
[CrossRef]

Lacroix, S.

Laurie, J.

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
[CrossRef]

Mezentsev, V. K.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
[CrossRef]

Nazarenko, S.

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
[CrossRef]

Picozzi, A.

P. Suret, A. Picozzi, and S. Randoux, “Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers,” Opt. Express19, 17852–17863 (2011).
[CrossRef] [PubMed]

B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A79, 063840 (2009).
[CrossRef]

Podivilov, E. V.

Randoux, S.

Renner, H.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
[CrossRef]

Residori, S.

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
[CrossRef]

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1058 (2007).
[CrossRef] [PubMed]

Shu, X.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

Smirnov, S. V.

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285, 2154–2160 (2012).
[CrossRef]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1058 (2007).
[CrossRef] [PubMed]

Suret, P.

Turitsyn, S. K.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
[CrossRef]

V. Karalekas, J. D. Ania-Castan, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15, 16690–16695 (2007).
[CrossRef] [PubMed]

Turitsyna, E. G.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
[CrossRef]

Appl. Phys. B

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, “Experimental and numerical study of the switching dynamics of Raman fiber lasers,” Appl. Phys. B, 80, 177–183 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1058 (2007).
[CrossRef] [PubMed]

Opt. Commun.

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285, 2154–2160 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, “One-dimensional optical wave turbulence: Experiment and theory,” Phys. Rep.514, 121–175 (2012).
[CrossRef]

Phys. Rev. A

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A80, 031804 (2009).
[CrossRef]

B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A79, 063840 (2009).
[CrossRef]

Proc. Roy. Soc. A.

E. G. Turitsyna, G. Falkovich, A. El-Taher, X. Shu, P. Harper, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long fibre lasers,” Proc. Roy. Soc. A.468, 2496–2508 (2012).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. HWP: Half-wave plate. PC: Polarization controller. AOM: acousto-optic modulator. OSA: Optical spectrum analyzer. Depending on the experiments, the power modulator can be either a chopper wheel or an AOM.

Fig. 2
Fig. 2

(a), (b) (d) Dynamics of the input pump power (black line), of the intracavity Stokes power (red line) and of the Stokes signal (blue line) launched in the OSA. (b) is a magnified view of (a) for Pin ∼ 3PTh with the AOM as power modulator. (d) is recorded for Pin ∼ 11PTh with the chopper wheel as power modulator. (c) Comparison between the intracavity Stokes power spectra recorded at steady state with (red line) and without (green line) switching the input pump power (inset: laser spectra in vertical logarithmic scale).

Fig. 3
Fig. 3

(a), (c) Transient buildup of the intracavity Stokes power and (b), (d) corresponding buildup of the Stokes optical power spectrum when the incident pump power is abruptly switched on between zero and Pin. In (a), (b) Pin ∼ 3PTh. In (c), (d), Pin ∼ 11PTh. The normalized spectra (1), (2), (3) in the right-column are measured during the time windows (1), (2), (3) shown in the left-column by using the experimental technique described in the text. The normalized spectra plotted in red in (b) and (d) are the laser spectra at steady-state. The insets in (b), (d) are the laser spectra plotted in vertical logarithmic scale.

Fig. 4
Fig. 4

Square-root broadening of the intracavity Stokes optical power spectrum. The blue cross represent experimental values of the FWHM of Stokes spectrum at steady state and the red line is a square-root fit of these data. The green triangles and the black squares are measurements of the FWHM made in the transient build up of Stokes emission. The green triangles have been measured with experimental conditions close to those of Fig. 3(a), 3(b) (Pin ∼ 3PTh) and for three values of τd (τd = 65, 70, 75μs). The black squares have been measured in three different runs with experimental conditions close to those of Fig. 3(c), 3(d) (Pin ∼ 11PTh) and for three values of τd (τd ∼ 13.1, 15.5, 16.2μs).

Metrics