Abstract

Silicate- and borosilicate-based PbS:glass material and borosilicate-glass-based fibers are fabricated and analyzed. Optical properties including absorption and emission are characterized and related to growth and annealing conditions. In silicate glasses PbS volume fractions of exceeding 0.4 percent and almost octave-spanning emission spectra with a halfwidth of 940 nm are achieved. Fiber bundles with a core being surrounded by three PbS:Glass fibers are pulled. A confinement factor of Γ = 0.00406 is determined. Emission properties, in particular emission bandwidth, are subsequently tuned and spectrally widened by annealing fibers in a gradient furnace. The results pave the way towards optically pumped broad-bandwidth light emitters based either on ‘bulk’ PbS:glass or PbS:glass-based fibers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
    [CrossRef]
  2. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
    [CrossRef]
  3. C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
    [CrossRef]
  4. J. M. Auxier, S. Honkanen, A. Schulzgen, M. M. Morrell, M. A. Leigh, S. Sen, N. E. Borrelli, and N. Peyghambarian, “Silver and potassium ion-exchanged waveguides in glasses doped with PbS semiconductor quantum dots,” J. Opt. Soc. Am. B23(6), 1037–1045 (2006).
    [CrossRef]
  5. E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
    [CrossRef]
  6. S. Joshi, S. Sen, and P. C. Ocampo, “Nucleation and growth kinetics of PbS quantum dots in oxide glass: spectroscopic and microscopic studies in the dilute range,” J. Phys. Chem. C111(11), 4105–4110 (2007).
    [CrossRef]
  7. N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
    [CrossRef]
  8. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
    [CrossRef] [PubMed]
  9. I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express2(5), 496–500 (2012).
    [CrossRef]
  10. K. K. Nanda, F. E. Kruis, and H. Fissan, “Energy levels in embedded semiconductor nanoparticles and nanowires,” Nano Lett.1(11), 605–611 (2001).
    [CrossRef]
  11. W. Vogel, Glass Chemistry (Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 1994).
  12. B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol.16(12), L89–L92 (2001).
    [CrossRef]

2012 (1)

2011 (1)

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

2010 (1)

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

2009 (1)

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

2007 (1)

S. Joshi, S. Sen, and P. C. Ocampo, “Nucleation and growth kinetics of PbS quantum dots in oxide glass: spectroscopic and microscopic studies in the dilute range,” J. Phys. Chem. C111(11), 4105–4110 (2007).
[CrossRef]

2006 (1)

2001 (2)

K. K. Nanda, F. E. Kruis, and H. Fissan, “Energy levels in embedded semiconductor nanoparticles and nanowires,” Nano Lett.1(11), 605–611 (2001).
[CrossRef]

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol.16(12), L89–L92 (2001).
[CrossRef]

1999 (1)

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

1997 (1)

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

1994 (1)

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

Allan, G.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Auxier, J.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Auxier, J. M.

Barbosa, L. C.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Bordonalli, A. C.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Borrelli, N. E.

Borrelli, N. F.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

Braga, R. L.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Butty, J.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Cheng, C.

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Cheng, X. Y.

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Chillcce, E. F.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Cordeiro, C. M. B.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Cruz, C. H. D.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

De Muynck, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Delerue, C.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Fissan, H.

K. K. Nanda, F. E. Kruis, and H. Fissan, “Energy levels in embedded semiconductor nanoparticles and nanowires,” Nano Lett.1(11), 605–611 (2001).
[CrossRef]

Fragnito, H. L.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Glas, P.

Guerreiro, P. T.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Gutierrez-Rivera, L.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Hens, Z.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Hernandez-Figueroa, H. E.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Honkanen, S.

Jabbour, G. E.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Jiang, H. L.

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Joshi, S.

S. Joshi, S. Sen, and P. C. Ocampo, “Nucleation and growth kinetics of PbS quantum dots in oxide glass: spectroscopic and microscopic studies in the dilute range,” J. Phys. Chem. C111(11), 4105–4110 (2007).
[CrossRef]

Kruis, F. E.

K. K. Nanda, F. E. Kruis, and H. Fissan, “Energy levels in embedded semiconductor nanoparticles and nanowires,” Nano Lett.1(11), 605–611 (2001).
[CrossRef]

Kruschke, D.

Lambert, K.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Leigh, M. A.

Ma, D. W.

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Martins, J. C.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Moreels, I.

I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express2(5), 496–500 (2012).
[CrossRef]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Morrell, M. M.

Nanda, K. K.

K. K. Nanda, F. E. Kruis, and H. Fissan, “Energy levels in embedded semiconductor nanoparticles and nanowires,” Nano Lett.1(11), 605–611 (2001).
[CrossRef]

Nollet, T.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Ocampo, P. C.

S. Joshi, S. Sen, and P. C. Ocampo, “Nucleation and growth kinetics of PbS quantum dots in oxide glass: spectroscopic and microscopic studies in the dilute range,” J. Phys. Chem. C111(11), 4105–4110 (2007).
[CrossRef]

Peyghambarian, N.

J. M. Auxier, S. Honkanen, A. Schulzgen, M. M. Morrell, M. A. Leigh, S. Sen, N. E. Borrelli, and N. Peyghambarian, “Silver and potassium ion-exchanged waveguides in glasses doped with PbS semiconductor quantum dots,” J. Opt. Soc. Am. B23(6), 1037–1045 (2006).
[CrossRef]

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Ramos-Gonzales, R. E.

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

Sakai, H.

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol.16(12), L89–L92 (2001).
[CrossRef]

Schroeder, R.

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol.16(12), L89–L92 (2001).
[CrossRef]

Schulzgen, A.

Sen, S.

S. Joshi, S. Sen, and P. C. Ocampo, “Nucleation and growth kinetics of PbS quantum dots in oxide glass: spectroscopic and microscopic studies in the dilute range,” J. Phys. Chem. C111(11), 4105–4110 (2007).
[CrossRef]

J. M. Auxier, S. Honkanen, A. Schulzgen, M. M. Morrell, M. A. Leigh, S. Sen, N. E. Borrelli, and N. Peyghambarian, “Silver and potassium ion-exchanged waveguides in glasses doped with PbS semiconductor quantum dots,” J. Opt. Soc. Am. B23(6), 1037–1045 (2006).
[CrossRef]

Smeets, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Smith, D. W.

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

Ten, S.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

Tomm, J. W.

Ullrich, B.

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol.16(12), L89–L92 (2001).
[CrossRef]

Vanhaecke, F.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Vantomme, A.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Wundke, K.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

ACS Nano (1)

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser,” Appl. Phys. Lett.71(12), 1595–1597 (1997).
[CrossRef]

J. Non-Cryst. Solids (2)

E. F. Chillcce, R. E. Ramos-Gonzales, C. M. B. Cordeiro, L. Gutierrez-Rivera, H. L. Fragnito, C. H. D. Cruz, A. C. Bordonalli, H. E. Hernandez-Figueroa, R. L. Braga, and L. C. Barbosa, “Luminescence of PbS quantum dots spread on the core surface of a silica microstructured optical fiber,” J. Non-Cryst. Solids356(44-49), 2397–2401 (2010).
[CrossRef]

N. F. Borrelli and D. W. Smith, “Quantum confinement of PbS microcrystals in glass,” J. Non-Cryst. Solids180(1), 25–31 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Joshi, S. Sen, and P. C. Ocampo, “Nucleation and growth kinetics of PbS quantum dots in oxide glass: spectroscopic and microscopic studies in the dilute range,” J. Phys. Chem. C111(11), 4105–4110 (2007).
[CrossRef]

Nano Lett. (1)

K. K. Nanda, F. E. Kruis, and H. Fissan, “Energy levels in embedded semiconductor nanoparticles and nanowires,” Nano Lett.1(11), 605–611 (2001).
[CrossRef]

Opt. Commun. (1)

C. Cheng, H. L. Jiang, D. W. Ma, and X. Y. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011).
[CrossRef]

Opt. Mater. Express (1)

Semicond. Sci. Technol. (1)

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol.16(12), L89–L92 (2001).
[CrossRef]

Other (1)

W. Vogel, Glass Chemistry (Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

PbS:Glass-based fiber bundle. (a) Interior part of a preform before pulling. (b) Pulled fiber with the cladding structure that serves for mechanical stability and the inner part, which appears here as bright triangle. (c) Inner part of the fiber with the three PbS:Glass fibers attached to the core in center. The labels (1-6) are explained in Table 2 including material, refractive index and dimension.

Fig. 2
Fig. 2

PL spectra from sample A. Note the by a factor of 100 scaled spectrum from the pristine material.

Fig. 3
Fig. 3

PL and α(λ) spectra from sample B1. The long-term annealing is a two-stage process of 475°C for 1320 min plus 525°C for 75 min.

Fig. 4
Fig. 4

Almost octave-spanning PL spectrum and α(λ) spectrum from the pristine sample B2.

Fig. 5
Fig. 5

PL spectra from a fiber sample taken in regular reflectance (black) and transmission-PL geometry (red) for three different excitation wavelengths, i.e. 442 nm (a), 800 nm (b) and 1064 nm (c). (d) Absorbance as determined from the couples of PL spectra shown in (a) - (c). The lines are linear fits obtained from the data in the 1250-1550 nm range. The inset shows a scheme explaining absorption, PL generation, and reabsorption within the bundle. The asterisk gives the 1/α-decay-length of the excitation light, representing here the location where the PL is generated within the PbS:Glass (gray), while the PL gets reabsorbed along l.

Fig. 6
Fig. 6

PL spectra taken in regular reflectance PL geometry with 442 nm close-to-surface excitation from the two ends of a 9 cm long fiber bundle, which has been annealed in the gradient furnace; see greatly simplified scheme on top. The annealing temperatures indicated are taken from the experimentally determined temperature profile of the gradient furnace.

Tables (2)

Tables Icon

Table 1 Composition of the borosilicate (BG) and silicate (SG) glasses in mass percent.

Tables Icon

Table 2 Fiber architecture of the fiber bundle. The terms LG and LFG refer to the denotations used for glass brands of technolux.a The asterisks pinpoint the average diameter of a round or triangular structure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I TPL (λ)= I PL (λ)exp(α(λ)d).
Γ(λ)= α (λ) Fiber α (λ) PbS:Glass .
d i =l 1 Γ [α( λ exc )] i ,

Metrics