Abstract

Whispering gallery modes in microspheres are excited by light delivered to them via optical fibers imbedded in a half-block coupler. The corresponding light intensity resonances in microspheres and coupling of two low-order linearly polarized modes in the fibers, LP01 and LP11, into the microspheres are observed. The LP01 and LP11 modes are delivered to the microsphere via a cylindrical optical fiber carrying light at two operating wavelengths, 1550 and 1300 nm correspondingly. The resonances behavioral differences generated by these fiber modes are also observed and explained. The properties of resonances generated by the LP01 and LP11 modes are analyzed using a linear polarizer inserted in the path of light propagating in optical fibers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [CrossRef]
  2. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12(1), 33–39 (2006).
    [CrossRef]
  3. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10(2), 343–352 (1993).
    [CrossRef]
  4. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett. 21(10), 695–697 (1996).
    [CrossRef] [PubMed]
  5. G. Schweiger and M. Horn, “Effect of changes in size and index of refraction on the resonance wavelength of microspheres,” J. Opt. Soc. Am. B 23(2), 212–217 (2006).
    [CrossRef]
  6. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [CrossRef]
  7. G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comput. Inf. Commun. 5(10), 409–424 (2008).
    [CrossRef]
  8. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [CrossRef] [PubMed]
  9. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42–162 (2005). http://tmo.jpl.nasa.gov/progress_report/42-162/162D.pdf .
  10. N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
    [CrossRef]
  11. Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85(1), 013801 (2012).
    [CrossRef]
  12. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  13. A. W. Snyder and W. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68(3), 297–309 (1978).
    [CrossRef]
  14. L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications, 2nd Edition, (Marcel Dekker, 1990), Chap. 1, pp. 1–59.
  15. D. Kumar and P. K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibers,” Am. J. Phys. 75(6), 546–551 (2007).
    [CrossRef]
  16. A. Yariv, Optical Electronics, 3rd ed. (CBS College Publishing, 1985), Chap. 3, pp. 54–86.
  17. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982), Chap. 8. pp. 288–347.
  18. W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, “Selective launching of higher-order modes into an optical fiber with an optical phase shifter,” Opt. Lett. 19(7), 454–456 (1994).
    [CrossRef] [PubMed]
  19. A. Kost, “Theory of Optical Modes in Step Index Fibers,” Photonics Communications Engineering, OPTI 500B, Lectures 17 and 18. http://opti500.cian-erc.org/opti500/pdf/Lecture_17_Optical_Fiber_Modes.pdf .
  20. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. 23(7), 1381–1389 (2006).
    [CrossRef]
  21. M. M. Mazumder, D. Q. Chowdhury, S. C. Hill, and R. K. Chang, “Optical resonances of a spherical dielectric microcavity: effects of perturbations,” in Optical Processes in Microspheres, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996), pp.209–256.
  22. R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series for light scattering by a multilayered sphere,” Appl. Opt. 45(6), 1260–1270 (2006).
    [CrossRef] [PubMed]
  23. L. G. Guimarães and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41(3), 625–647 (1994).
  24. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonances,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [CrossRef]
  25. J. A. Lock, “Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam,” J. Opt. Soc. Am. A 15(12), 2986–2994 (1998).
    [CrossRef]
  26. C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
    [CrossRef]
  27. E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31(9), 1166–1169 (1992).
    [CrossRef] [PubMed]
  28. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20(7), 654–656 (1995).
    [CrossRef] [PubMed]
  29. A. Serpengüzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14(4), 790–795 (1997).
    [CrossRef]
  30. Corning OptiFocus Collimated Lensed Fiber, Product Information. http://www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf .
  31. G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).
  32. L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).
  33. K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).
  34. K. Iizuka, Elements of Photonics, v.2, (Wiley, 2002), Chapter 11.3, Field Distribution Inside Optical Fibers, pp. 730-739.
  35. A. Yu. Savchenko and B. Ya. Zel’dovich, “Wave propagation in a guiding structure: one step beyond the paraxial approximation,” J. Opt. Soc. Am. B 13(2), 273–281 (1996).
  36. N. D. Kundikova, “Manifestation of spin-orbital interaction of a photon,” Laser Phys. 20(2), 325–333 (2010).
  37. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
  38. V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

2012 (1)

Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85(1), 013801 (2012).
[CrossRef]

2010 (2)

G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).

N. D. Kundikova, “Manifestation of spin-orbital interaction of a photon,” Laser Phys. 20(2), 325–333 (2010).

2009 (2)

N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
[CrossRef]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[CrossRef] [PubMed]

2008 (2)

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comput. Inf. Commun. 5(10), 409–424 (2008).
[CrossRef]

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[CrossRef]

2007 (1)

D. Kumar and P. K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibers,” Am. J. Phys. 75(6), 546–551 (2007).
[CrossRef]

2006 (6)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. 23(7), 1381–1389 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12(1), 33–39 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

G. Schweiger and M. Horn, “Effect of changes in size and index of refraction on the resonance wavelength of microspheres,” J. Opt. Soc. Am. B 23(2), 212–217 (2006).
[CrossRef]

R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series for light scattering by a multilayered sphere,” Appl. Opt. 45(6), 1260–1270 (2006).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (2)

A. Serpengüzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14(4), 790–795 (1997).
[CrossRef]

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

1996 (2)

1995 (1)

1994 (2)

1993 (1)

1992 (2)

1981 (1)

K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).

1980 (1)

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).

1978 (1)

1971 (1)

Adamovsky, G.

G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comput. Inf. Commun. 5(10), 409–424 (2008).
[CrossRef]

Arnold, S.

Barber, P. W.

Bian, S. N.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[CrossRef]

Butkovskaya, V. V.

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

Choudhury, P. K.

D. Kumar and P. K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibers,” Am. J. Phys. 75(6), 546–551 (2007).
[CrossRef]

Chowdhury, D. Q.

Cohen, L. G.

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).

Connolly, J.

Corrado, B. J.

Crotty, M.

G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).

Dooghin, A. V.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).

Eggleton, B. J.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[CrossRef]

Fadeeva, T. A.

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

Floyd, B.

G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).

Fomin, A. E.

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12(1), 33–39 (2006).
[CrossRef]

French, W. G.

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).

Gloge, D.

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12(1), 33–39 (2006).
[CrossRef]

Griffel, G.

Grillet, C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[CrossRef]

Guimarães, L. G.

L. G. Guimarães and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41(3), 625–647 (1994).

Gupta, N.

N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
[CrossRef]

Han, X.

Haus, H. A.

Hill, S. C.

Holler, S.

Horn, M.

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

Ioppolo, T.

N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
[CrossRef]

Jiang, H.

Johnson, B. R.

Kato, Y.

K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).

Keng, D.

Khaled, E. E. M.

Kitayama, K.-I.

K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).

Kumar, D.

D. Kumar and P. K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibers,” Am. J. Phys. 75(6), 546–551 (2007).
[CrossRef]

Kundikova, N. D.

N. D. Kundikova, “Manifestation of spin-orbital interaction of a photon,” Laser Phys. 20(2), 325–333 (2010).

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).

Laine, J.-P.

Li, R.

Liberman, V. S.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).

Lin, C.

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).

Little, B. E.

Lock, J. A.

Magi, E. C.

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[CrossRef]

Mammel, W. L.

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

Morris, N.

Nguyen, N. Q.

N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
[CrossRef]

Nussenzveig, H. M.

L. G. Guimarães and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41(3), 625–647 (1994).

Otugen, M. V.

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comput. Inf. Commun. 5(10), 409–424 (2008).
[CrossRef]

Ötügen, M. V.

N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
[CrossRef]

Ren, K. F.

Savchenko, A. Yu.

Schweiger, G.

Seikai, S.

K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).

Serpengüzel, A.

Shen, J.-T.

Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85(1), 013801 (2012).
[CrossRef]

Shen, Y.

Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85(1), 013801 (2012).
[CrossRef]

Shopova, S. I.

Snyder, A. W.

Taskent, D.

Teraoka, I.

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. 23(7), 1381–1389 (2006).
[CrossRef]

Thornburg, W. Q.

Uchida, N.

K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).

Vollmer, F.

Volyar, A. V.

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

Wrbanek, S.

G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).

Young, W.

Zel’dovich, B. Ya.

A. Yu. Savchenko and B. Ya. Zel’dovich, “Wave propagation in a guiding structure: one step beyond the paraxial approximation,” J. Opt. Soc. Am. B 13(2), 273–281 (1996).

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).

Zhu, X. D.

Zurawsky, W.

Am. J. Phys. (1)

D. Kumar and P. K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibers,” Am. J. Phys. 75(6), 546–551 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008).
[CrossRef]

Bell Syst. Tech. J. (1)

L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).

IEEE J. Quantum Electron. (1)

K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).

IEEE J. Sel. Top. Quantum Electron. (3)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[CrossRef]

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12(1), 33–39 (2006).
[CrossRef]

J. Aerosp. Comput. Inf. Commun. (1)

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comput. Inf. Commun. 5(10), 409–424 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009).
[CrossRef]

J. Mod. Opt. (1)

L. G. Guimarães and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41(3), 625–647 (1994).

J. Opt. Soc. Am. (2)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. 23(7), 1381–1389 (2006).
[CrossRef]

A. W. Snyder and W. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68(3), 297–309 (1978).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

N. D. Kundikova, “Manifestation of spin-orbital interaction of a photon,” Laser Phys. 20(2), 325–333 (2010).

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).

Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85(1), 013801 (2012).
[CrossRef]

Proc. SPIE (1)

G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).

Tech. Phys. Lett. (1)

V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

Other (8)

L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications, 2nd Edition, (Marcel Dekker, 1990), Chap. 1, pp. 1–59.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42–162 (2005). http://tmo.jpl.nasa.gov/progress_report/42-162/162D.pdf .

A. Yariv, Optical Electronics, 3rd ed. (CBS College Publishing, 1985), Chap. 3, pp. 54–86.

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982), Chap. 8. pp. 288–347.

A. Kost, “Theory of Optical Modes in Step Index Fibers,” Photonics Communications Engineering, OPTI 500B, Lectures 17 and 18. http://opti500.cian-erc.org/opti500/pdf/Lecture_17_Optical_Fiber_Modes.pdf .

M. M. Mazumder, D. Q. Chowdhury, S. C. Hill, and R. K. Chang, “Optical resonances of a spherical dielectric microcavity: effects of perturbations,” in Optical Processes in Microspheres, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996), pp.209–256.

K. Iizuka, Elements of Photonics, v.2, (Wiley, 2002), Chapter 11.3, Field Distribution Inside Optical Fibers, pp. 730-739.

Corning OptiFocus Collimated Lensed Fiber, Product Information. http://www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of experimental setup.

Fig. 2
Fig. 2

Resonant spectra obtained using the 1550 nm operating wavelength and two angular positions of the polarizer: (a) 0 degrees and (b) 60 degrees.

Fig. 3
Fig. 3

Resonant spectra obtained using the 1300 nm operating wavelength and two angular positions of the polarizer: (a) 0 degrees and (b) 60 degrees.

Fig. 4
Fig. 4

Resonance peak intensity as a function of polarization angle for two operational wavelengths: (a) 1550 nm and (b) 1300 nm.

Metrics