Abstract

Double Fano resonant characteristics are investigated in planar plasmonic structure by embedding a metallic nanorod in symmetric U-shaped split ring resonators, which are caused by a strong interplay between a broad bright mode and narrow dark modes. The bright mode is resulted from the nanorod electric dipole resonance while the dark modes originate from the magnetic dipole induced by LC resonances. The overlapped dual Fano resonances can be decomposed to two separate ones by adjusting the coupling length between the nanorod and U-shaped split ring resonators. Fano resonances in the designed structure exhibit high refractive-index sensing sensitivity and figure of merit, which have potential applications in single or double-wavelength sensing in the near-infrared region.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lombardi and R. L. Birke, “A Unified View of Surface-Enhanced Raman Scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
    [CrossRef] [PubMed]
  2. S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
    [CrossRef]
  3. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  4. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
    [CrossRef] [PubMed]
  5. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
    [CrossRef] [PubMed]
  6. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
    [CrossRef] [PubMed]
  7. A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  9. Z.-G. Dong, P.-G. Ni, J. Zhu, and X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express20(7), 7206–7211 (2012).
    [CrossRef] [PubMed]
  10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  11. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]
  12. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
    [CrossRef] [PubMed]
  13. Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano4(3), 1521–1528 (2010).
    [CrossRef] [PubMed]
  14. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
    [CrossRef] [PubMed]
  15. A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
    [CrossRef] [PubMed]
  16. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011).
    [CrossRef] [PubMed]
  17. Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
    [CrossRef]
  18. Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
    [CrossRef] [PubMed]
  19. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
    [CrossRef] [PubMed]
  20. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  21. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010).
    [CrossRef] [PubMed]
  22. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express18(12), 13044–13050 (2010).
    [CrossRef] [PubMed]
  23. P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
    [CrossRef]
  24. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  25. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
    [CrossRef] [PubMed]
  26. R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
    [CrossRef]
  27. W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37(16), 3366–3368 (2012).
    [CrossRef]
  28. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
    [CrossRef]
  29. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
    [CrossRef] [PubMed]
  30. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  31. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters,” ACS Nano5(10), 8202–8211 (2011).
    [CrossRef] [PubMed]
  32. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
    [CrossRef] [PubMed]
  33. A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
    [CrossRef] [PubMed]
  34. E. D. Palik, “Handbook of Optical Constants of Solids” (Academic Press, 1985).
  35. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
    [CrossRef] [PubMed]
  36. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
    [CrossRef] [PubMed]
  37. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
    [CrossRef] [PubMed]
  38. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
    [CrossRef] [PubMed]
  39. J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
    [CrossRef] [PubMed]

2012 (8)

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Z.-G. Dong, P.-G. Ni, J. Zhu, and X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express20(7), 7206–7211 (2012).
[CrossRef] [PubMed]

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
[CrossRef] [PubMed]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37(16), 3366–3368 (2012).
[CrossRef]

2011 (17)

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

2010 (6)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express18(12), 13044–13050 (2010).
[CrossRef] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010).
[CrossRef] [PubMed]

2009 (2)

J. R. Lombardi and R. L. Birke, “A Unified View of Surface-Enhanced Raman Scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Al-Naib, I. A. I.

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

Aydin, K.

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A Unified View of Surface-Enhanced Raman Scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

Brener, I.

Cai, G. W.

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

Cai, J.

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Cao, W.

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37(16), 3366–3368 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Chen, C.

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Chen, J.

Cheng, Y. G.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Chowdhury, D. R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Ding, P.

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

Dong, Z.-G.

Dregely, D.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

Drezek, R. A.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

Fan, C. Z.

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Fang, Z. Y.

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Giessen, H.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Gu, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

Halas, N. J.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Han, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Hao, Z. H.

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

He, J. N.

He, M.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37(16), 3366–3368 (2012).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Hu, W. Q.

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

Hu, Y.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Huang, R.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Kivshar, Y.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Koch, M.

Lagae, L.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Li, J. B.

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

Li, X.

S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Li, X.-Y.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Li, Z.

Liang, E. J.

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Liu, R.

S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Liu, R.-P.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Liu, S.

S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Liu, S.-D.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Liu, X.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Lodewijks, K.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A Unified View of Surface-Enhanced Raman Scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

Lu, Y.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Ma, Y.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Ming, H.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Moshchalkov, V. V.

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Ni, P.-G.

Noelck, S. J.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

Nordlander, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

O’Hara, J. F.

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Park, N.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Piao, X.

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Pryce, I. M.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Singh, R.

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37(16), 3366–3368 (2012).
[CrossRef]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express18(12), 13044–13050 (2010).
[CrossRef] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Smirnova, E.

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

Taylor, A. J.

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

Van Dorpe, P.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Vercruysse, D.

Verellen, N.

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Wang, J. Q.

Wang, P.

Wang, Q. Q.

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

Xue, Q. Z.

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

Yan, Z.

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Yang, Y.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Yang, Z.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Yang, Z. J.

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

Yu, S.

Zhan, Q.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, W.

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett.37(16), 3366–3368 (2012).
[CrossRef]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express18(12), 13044–13050 (2010).
[CrossRef] [PubMed]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Zhang, X.

Z.-G. Dong, P.-G. Ni, J. Zhu, and X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express20(7), 7206–7211 (2012).
[CrossRef] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, Z. S.

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, J.

Z.-G. Dong, P.-G. Ni, J. Zhu, and X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express20(7), 7206–7211 (2012).
[CrossRef] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

Zhu, X.

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

J. R. Lombardi and R. L. Birke, “A Unified View of Surface-Enhanced Raman Scattering,” Acc. Chem. Res.42(6), 734–742 (2009).
[CrossRef] [PubMed]

ACS Nano (4)

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano4(3), 1521–1528 (2010).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano3(3), 643–652 (2009).
[CrossRef] [PubMed]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and Tuning of Higher-Order Fano Resonances in Plasmonic Oligomer Clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Multiple Fano Resonances in Plasmonic Heptamer Clusters Composed of Split Nanorings,” ACS Nano6(7), 6260–6271 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Z. S. Zhang, Z. J. Yang, J. B. Li, Z. H. Hao, and Q. Q. Wang, “Plasmonic interferences in two-dimensional stacked double-disk array,” Appl. Phys. Lett.98(17), 173111 (2011).
[CrossRef]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett.100(13), 131101 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. Phys. Chem. C (1)

S. Liu, Z. Yang, R. Liu, and X. Li, “High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity,” J. Phys. Chem. C115(50), 24469–24477 (2011).
[CrossRef]

Nano Lett. (8)

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A Plasmonic Fano Switch,” Nano Lett.12(9), 4977–4982 (2012).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

Z. Y. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett.11(4), 1657–1663 (2011).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett.11(9), 3694–3700 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing,” Nano Lett.11(2), 391–397 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Opt. Express (10)

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express18(12), 13044–13050 (2010).
[CrossRef] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express18(13), 13407–13417 (2010).
[CrossRef] [PubMed]

J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19(7), 5970–5978 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19(9), 8912–8919 (2011).
[CrossRef] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express19(12), 11034–11051 (2011).
[CrossRef] [PubMed]

Z.-G. Dong, P.-G. Ni, J. Zhu, and X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express20(7), 7206–7211 (2012).
[CrossRef] [PubMed]

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photon. Nanostructures-Fundam.and Applic. (1)

P. Ding, E. J. Liang, W. Q. Hu, G. W. Cai, and Q. Z. Xue, “Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays,” Photon. Nanostructures-Fundam.and Applic.9(1), 42–48 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett.106(10), 107403 (2011).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Science (2)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science328(5982), 1135–1138 (2010).
[CrossRef] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, “Handbook of Optical Constants of Solids” (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Configuration of the designed planar plasmonic structure SRRs/Rod composed of two metallic SRRs and a nanorod. (b) Simulated scattering spectra of SRRs (green), nanorod (blue) and SRRs/Rod (red) structure. The dotted black curve is a fitting of the scattering spectrum (red) using the two oscillators interference model.

Fig. 2
Fig. 2

Current and field distributions on the SRRs/Rod structure in the x-y plane. (a) The current distribution of SRRs/Rod structure at 293THz. (b), (c), and (d) show the current, magnetic field component in the z-direction (i.e. Hz), and electric field component in the y-direction (i.e. Ey) distribution of SRRs/Rod structure at 206 THz.

Fig. 3
Fig. 3

(a) Simulated scattering spectrum of the asymmetric SRRs/Rod for d1 = 50 nm and d2 = 30 nm. The dotted black curve is a fitting of the scattering spectrum (red) using three oscillators interference model. (b) The evolution of the double Fano resonances against the separation d = d1-d2 (here d2 = 30 nm).

Fig. 4
Fig. 4

The current, magnetic field, and electric field distribution of the asymmetric SRRs/Rod structure in the x-y plane in resonance with D1 (a-b) and D2 (d-f) mode, respectively.

Fig. 5
Fig. 5

(a) The scattering spectra of asymmetric SRRs/Rod structure with d1 = 50 nm and d2 = 30 nm and (b) the plasmon resonance shift of D1, D2, D, and B modes with different refractive indices of surrounding dielectric environment.

Tables (1)

Tables Icon

Table 1 Evaluation of Sensing Performance by Refractive Index Sensitivity (S) and Figure of Merit (FOM)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s(ω)= a r + j b j Γ j e i ϕ j ω ω j +i( γ j + Γ j )
FOM= S FWHM = δλ/δn λ

Metrics