Abstract

We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called “stealth” or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
    [CrossRef]
  2. K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron.3(2), 698–701 (1997).
    [CrossRef]
  3. J. M. Castro, I. B. Djordjevic, and D. F. Geraghty, “Novel super structured Bragg gratings for optical encryption,” J. Lightwave Technol.24(4), 1875–1885 (2006).
    [CrossRef]
  4. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express14(9), 3738–3751 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-9-3738 .
    [CrossRef] [PubMed]
  5. Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett.23(1), 48–50 (2011).
    [CrossRef]
  6. K. Kravtsov, B. Wu, I. Glesk, P. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” in Proceedings of IEEE/LEOS Annual Meeting, 480–481 (2007).
  7. B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic fiber-optic transmission using coherent spectral-phase-encoded optical CDMA,” in Proc. CLEO/QELS, San Jose, CA, Paper CEF5 (2008).
  8. Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
    [CrossRef]
  9. X. Hong, D. Wang, L. Xu, and S. He, “Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering,” Opt. Express18(12), 12415–12420 (2010). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-12-12415 .
    [CrossRef] [PubMed]
  10. M. P. Fok and P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett.45(3), 179–180 (2009).
    [CrossRef]
  11. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
    [CrossRef]
  12. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science279(5354), 1198–1200 (1998).
    [CrossRef] [PubMed]
  13. A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).
  14. J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express17(15), 12619–12626 (2009), http://8.18.37.105/oe/abstract.cfm?uri=oe-17-15-12619 . http://8.18.37.105/oe/abstract.cfm?uri=oe-17-15-12619 .
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), Chap. 6.
  16. W. Wells, R. Stone, and E. Miles, “Secure communication by optical homodyne,” IEEE J. Sel. Areas Comm.11(5), 770–777 (1993).
    [CrossRef]
  17. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (CRC, 2008), Chap. 2.

2011 (2)

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett.23(1), 48–50 (2011).
[CrossRef]

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

2010 (1)

2009 (2)

2007 (1)

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

2006 (3)

2004 (1)

K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
[CrossRef]

1998 (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

1997 (1)

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron.3(2), 698–701 (1997).
[CrossRef]

1993 (1)

W. Wells, R. Stone, and E. Miles, “Secure communication by optical homodyne,” IEEE J. Sel. Areas Comm.11(5), 770–777 (1993).
[CrossRef]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Castro, J. M.

Chan, C. K.

K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
[CrossRef]

Chan, K.

K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
[CrossRef]

Chen, L. K.

K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

Djordjevic, I. B.

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

M. P. Fok and P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett.45(3), 179–180 (2009).
[CrossRef]

Geraghty, D. F.

Glesk, I.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

He, S.

Hong, X.

Huang, Y.-K.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

Hunziker, G.

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron.3(2), 698–701 (1997).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Liu, J.

Lodi, V. A.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Miles, E.

W. Wells, R. Stone, and E. Miles, “Secure communication by optical homodyne,” IEEE J. Sel. Areas Comm.11(5), 770–777 (1993).
[CrossRef]

Mirasso, C.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Narimanov, E. E.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express14(9), 3738–3751 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-9-3738 .
[CrossRef] [PubMed]

Ojalvo, J. G.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Paiella, R.

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron.3(2), 698–701 (1997).
[CrossRef]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Prucnal, P. R.

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett.23(1), 48–50 (2011).
[CrossRef]

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

M. P. Fok and P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett.45(3), 179–180 (2009).
[CrossRef]

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Stone, R.

W. Wells, R. Stone, and E. Miles, “Secure communication by optical homodyne,” IEEE J. Sel. Areas Comm.11(5), 770–777 (1993).
[CrossRef]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Tong, F.

K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
[CrossRef]

Vahala, K.

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron.3(2), 698–701 (1997).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

Wang, D.

Wang, T.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett.23(1), 48–50 (2011).
[CrossRef]

Wells, W.

W. Wells, R. Stone, and E. Miles, “Secure communication by optical homodyne,” IEEE J. Sel. Areas Comm.11(5), 770–777 (1993).
[CrossRef]

Wu, B.

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

Wu, B. B.

Wu, Z. M.

Xia, G. Q.

Xu, L.

Electron. Lett. (2)

Y.-K. Huang, B. Wu, I. Glesk, E. E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques,” Electron. Lett.43(25), 1449–1451 (2007).
[CrossRef]

M. P. Fok and P. R. Prucnal, “A compact and low-latency scheme for optical steganography using chirped fiber Bragg gratings,” Electron. Lett.45(3), 179–180 (2009).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

W. Wells, R. Stone, and E. Miles, “Secure communication by optical homodyne,” IEEE J. Sel. Areas Comm.11(5), 770–777 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Vahala, R. Paiella, and G. Hunziker, “Ultrafast WDM logic,” IEEE J. Sel. Top. Quantum Electron.3(2), 698–701 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Wang and P. R. Prucnal, “Optical steganography over a public DPSK channel with asynchronous detection,” IEEE Photon. Technol. Lett.23(1), 48–50 (2011).
[CrossRef]

K. Chan, C. K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett.16(3), 897–899 (2004).
[CrossRef]

IEEE Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic network,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. A. Lodi, P. Colet, I. Fischer, J. G. Ojalvo, C. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature438, 343–346 (2006).

Opt. Express (3)

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science279(5354), 1198–1200 (1998).
[CrossRef] [PubMed]

Other (4)

K. Kravtsov, B. Wu, I. Glesk, P. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” in Proceedings of IEEE/LEOS Annual Meeting, 480–481 (2007).

B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic fiber-optic transmission using coherent spectral-phase-encoded optical CDMA,” in Proc. CLEO/QELS, San Jose, CA, Paper CEF5 (2008).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), Chap. 6.

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (CRC, 2008), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental Setup (EDFA: erbium-doped fiber amplifier; P: polarizer; ASE: amplified spontaneous emission; PM: phase modulator; PD: phase demodulator; SSMF: standard single mode fiber; DCF: dispersion compensation fiber; WDM: wavelength division multiplexer).

Fig. 2
Fig. 2

(a) Coherence peaks for the incoherent ASE. (b) Enlarged view of region marked by red solid line in (a). (c) BER measurement at the coherence peak

Fig. 3
Fig. 3

(a) Signal at point A in Fig. 1 with only public channel. (b) Signal at point A with public channel and modulated signal ASE. (c) Signal at point A with public channel and ASE not modulated. (d) Eye diagram of stealth channel with public channel on. (e) Eye diagram of stealth channel with public channel off. (f) Eye diagram of stealth channel with additional ASE on. (g) Eye diagram of public channel without signal ASE. (h) Eye diagram of public channel with signal ASE.

Fig. 4
Fig. 4

Fig. 4 (a) Spectrum of the signal before entering the 25 km of SSMF and DCF. (AASE: additional ASE) (b) Spectrum before and after the WDM filter.

Fig. 5
Fig. 5

BER performance versus received signal power for: (a) the stealth channel with and without public channel and AASE, data after the noise floor is not considered in the linear fit with AASE. The inset shows the penalty from additional ASE at different ratio of addition ASE to signal ASE. (b) The public channel with and without the stealth channel and additional ASE.

Metrics