Abstract

Recent work has indicated that ghost imaging might find useful application in standoff sensing where atmospheric turbulence is a serious problem. There has been theoretical study of ghost imaging in the presence of turbulence. However, most work has addressed signal-wavelength ghost imaging. Two-wavelength ghost imaging through atmospheric turbulence is theoretically studied in this paper. Based on the extended Huygens-Fresnel integral, the analytical expressions describing atmospheric turbulence effects on the point spread function (PSF) and field of view (FOV) are derived. The computational case is also reported.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shapiro and R. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. DOI 10.1007 (2012).
  2. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” AIP Conf. Proc.1110, 417–422 (2009).
  3. G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett.96(6), 063602 (2006).
    [CrossRef] [PubMed]
  4. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A77(4), 043809 (2008).
    [CrossRef]
  5. Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(5), 056607 (2005).
    [CrossRef] [PubMed]
  6. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett.98(11), 111115 (2011).
    [CrossRef]
  7. R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
    [CrossRef]
  8. R. E. Meyers, K. S. Deacon, and Y. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett.100(13), 131114 (2012).
    [CrossRef]
  9. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
    [CrossRef]
  10. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express17(10), 7916–7921 (2009).
    [CrossRef] [PubMed]
  11. C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
    [CrossRef]
  12. N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A84(6), 063824 (2011).
    [CrossRef]
  13. N. D. Hardy and J. H. Shapiro, “Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio,” Proc. SPIE7815, 78150L (2010).
    [CrossRef]
  14. K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
    [CrossRef]
  15. P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
    [CrossRef]
  16. P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
    [CrossRef]
  17. K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A79(3), 033808 (2009).
    [CrossRef]
  18. S. Karmakar and Y. H. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A81(3), 033845 (2010).
    [CrossRef]
  19. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802(R) (2008).
  20. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009).
    [CrossRef]
  21. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 2005).

2012

J. Shapiro and R. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. DOI 10.1007 (2012).

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett.100(13), 131114 (2012).
[CrossRef]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

2011

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett.98(11), 111115 (2011).
[CrossRef]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A84(6), 063824 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

2010

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
[CrossRef]

N. D. Hardy and J. H. Shapiro, “Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio,” Proc. SPIE7815, 78150L (2010).
[CrossRef]

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

S. Karmakar and Y. H. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A81(3), 033845 (2010).
[CrossRef]

2009

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009).
[CrossRef]

K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A79(3), 033808 (2009).
[CrossRef]

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express17(10), 7916–7921 (2009).
[CrossRef] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” AIP Conf. Proc.1110, 417–422 (2009).

2008

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A77(4), 043809 (2008).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802(R) (2008).

2006

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett.96(6), 063602 (2006).
[CrossRef] [PubMed]

2005

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(5), 056607 (2005).
[CrossRef] [PubMed]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett.96(6), 063602 (2006).
[CrossRef] [PubMed]

Boyd, R.

J. Shapiro and R. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. DOI 10.1007 (2012).

Boyd, R. W.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A79(3), 033808 (2009).
[CrossRef]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009).
[CrossRef]

Cai, Y.

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(5), 056607 (2005).
[CrossRef] [PubMed]

Chan, K. W. C.

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A79(3), 033808 (2009).
[CrossRef]

Chen, M.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

Cheng, J.

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett.100(13), 131114 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett.98(11), 111115 (2011).
[CrossRef]

Dixon, P.

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

Dixon, P. B.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

Eberly, J. H.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” AIP Conf. Proc.1110, 417–422 (2009).

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A77(4), 043809 (2008).
[CrossRef]

Gong, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
[CrossRef]

Han, S.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
[CrossRef]

Hardy, N. D.

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A84(6), 063824 (2011).
[CrossRef]

N. D. Hardy and J. H. Shapiro, “Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio,” Proc. SPIE7815, 78150L (2010).
[CrossRef]

Howell, J. C.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

Howland, G. A.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

Karmakar, S.

S. Karmakar and Y. H. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A81(3), 033845 (2010).
[CrossRef]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009).
[CrossRef]

Li, C.

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

Li, E.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett.100(13), 131114 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett.98(11), 111115 (2011).
[CrossRef]

O’Sullivan, M. N.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

O'Sullivan, M. N.

K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A79(3), 033808 (2009).
[CrossRef]

O'Sullivan-Hale, C.

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

Pu, J.

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

Rao, R.

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

Rodenburg, B.

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett.96(6), 063602 (2006).
[CrossRef] [PubMed]

Sergienko, A. V.

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

Shapiro, J.

J. Shapiro and R. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. DOI 10.1007 (2012).

Shapiro, J. H.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A84(6), 063824 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

N. D. Hardy and J. H. Shapiro, “Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio,” Proc. SPIE7815, 78150L (2010).
[CrossRef]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” AIP Conf. Proc.1110, 417–422 (2009).

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A77(4), 043809 (2008).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802(R) (2008).

Shen, X.

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
[CrossRef]

Shih, Y.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett.100(13), 131114 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett.98(11), 111115 (2011).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett.96(6), 063602 (2006).
[CrossRef] [PubMed]

Shih, Y. H.

S. Karmakar and Y. H. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A81(3), 033845 (2010).
[CrossRef]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009).
[CrossRef]

Simon, D. S.

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

Tunick, A. D.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
[CrossRef]

Wang, H.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

Wang, T.

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

Xu, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

Zhang, P.

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
[CrossRef]

Zhao, C.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

Zhu, S.-Y.

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(5), 056607 (2005).
[CrossRef] [PubMed]

Zhu, W.

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

AIP Conf. Proc.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” AIP Conf. Proc.1110, 417–422 (2009).

Appl. Phys. B

C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B99(3), 599–604 (2010).
[CrossRef]

Appl. Phys. Lett.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett.98(11), 111115 (2011).
[CrossRef]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett.100(6), 061126 (2012).
[CrossRef]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett.100(13), 131114 (2012).
[CrossRef]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett.101(14), 141123 (2012).
[CrossRef]

Opt. Express

Phys. Rev. A

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A77(4), 043809 (2008).
[CrossRef]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A84(6), 063824 (2011).
[CrossRef]

K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A84(4), 043807 (2011).
[CrossRef]

P. Dixon, G. A. Howland, K. W. C. Chan, C. O'Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A83(5), 051803 (2011).
[CrossRef]

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A82(3), 033817 (2010).
[CrossRef]

K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A79(3), 033808 (2009).
[CrossRef]

S. Karmakar and Y. H. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A81(3), 033845 (2010).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802(R) (2008).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(5), 056607 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett.96(6), 063602 (2006).
[CrossRef] [PubMed]

Proc. SPIE

N. D. Hardy and J. H. Shapiro, “Ghost imaging in reflection: resolution, contrast, and signal-to-noise ratio,” Proc. SPIE7815, 78150L (2010).
[CrossRef]

Other

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 2005).

J. Shapiro and R. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. DOI 10.1007 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematic of two-wavelength lensless ghost imaging through atmospheric turbulence. DM represents the dichroic mirror. The u,xr,xt,y are the coordinators at the output plane of SLM systems, CCD detector plane, single pixel bucket detector plane and object plane, respectively.

Fig. 2
Fig. 2

The Wpsf as a function of distance z1 for fixed λ1, z0. Parameters used are λ1=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 3
Fig. 3

The Wpsf as a function of distance z1 for fixed λ2, z0. Parameters used are λ2=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 4
Fig. 4

The Wfov as a function of distance z1 for fixed λ1, z0. Parameters used are λ1=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 5
Fig. 5

The Wfov as a function of distance z1 for fixed λ2, z0. Parameters used are λ2=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 6
Fig. 6

The Wcpsf as a function of distance z1 for fixed λ1, z0. Parameters used are λ1=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 7
Fig. 7

The Wcpsf as a function of distance z1 for fixed λ2, z0. Parameters used are λ2=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 8
Fig. 8

The Wcfov as a function of distance z1 for fixed λ1, z0. Parameters used are λ1=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Fig. 9
Fig. 9

The Wcfov as a function of distance z1 for fixed λ2, z0. Parameters used are λ2=1.2μm, ω=5cm, lc=1mm, z0=1km. (A-E) are the curve lines for C2 n =10−16, 10−15, 10−14, 10−13, 10−12m-2/3. (F) is linear-type corresponding to the two wavelength values.

Tables (1)

Tables Icon

Table 1 Different wavelengths turbulence coherence lengths (m) for 1km path length and uniform C2 n distribution.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E r ( x r )= jexp( 2jπ z 1 λ 2 ) λ 2 z 1 du E ir ( λ 2 ,u)exp[ jπ λ 2 z 1 ( x r u) 2 ] exp[ ϕ 1 ( x r ,u) ],
E t ( x t )= exp( 2jπ( z 0 + z 2 ) λ 1 ) λ 1 2 z 0 z 2 dydu E it ( λ 1 ,u)exp[ jπ λ 1 z 0 (yu) 2 ] exp[ ϕ 0 (y,u) ]           ×t(y)exp[ jπ λ 1 z 2 ( x t y) 2 ]exp[ ϕ 2 ( x t ,y) ],
E it ( λ 1 ,u)= E t' ( λ 1 ,u)exp[ jϕ(u) ], E ir ( λ 2 ,u)= E r' ( λ 2 ,u)exp[ jϕ(u) ],
G( x t , x r )= ( I t ( x t ) I t ( x t ) )( I r ( x r ) I r ( x r ) ) = I t ( x t ) I r ( x r ) I t ( x t ) I r ( x r )              = E t * ( x t ) E t ( x t ) E r * ( x r ) E r ( x r ) E t * ( x t ) E t ( x t ) E r * ( x r ) E r ( x r )               = 1 λ 1 4 λ 2 2 z 0 2 z 1 2 z 2 2 d u 1 d u 1 d u 2 d u 2 dyd y Γ( u 1 , u 1 , u 2 , u 2 ) <t(y) t * ( y )>              × exp[ ϕ 1 ( u 2 , x r )+ ϕ 1 * ( u 2 , x r ) ] exp[ ϕ 0 ( u 1 ,y)+ ϕ 0 * ( u 1 , y ) ]              × exp[ ϕ 2 (y, x t )+ ϕ 2 * ( y , x t ) ] exp{ jπ λ 2 z 1 [ ( x r u 2 ) 2 ( x r u 2 ) 2 ] }              ×exp{ jπ λ 1 z 0 [ (y u 1 ) 2 ( y u 1 ) 2 ] }exp{ jπ λ 1 z 2 [ ( x t y) 2 ( x t y ) 2 ] },
Γ( u 1 , u 1 , u 2 , u 2 )= E it ( u 1 ) E it * ( u 1 ) E ir * ( u 2 ) E ir ( u 2 ) E it ( u 1 ) E it * ( u 1 ) E ir * ( u 2 ) E ir ( u 2 ) .
Γ( u 1 , u 1 , u 2 , u 2 )= E t' ( λ 1 , u 1 ) E t' * ( λ 1 , u 1 ) E r' ( λ 2 , u 2 ) E r' * ( λ 2 , u 2 )                          ×( exp{ j[ ϕ( u 1 )ϕ( u 1 )+ϕ( u 2 )ϕ( u 2 ) ] }                           exp{ j[ ϕ( u 1 )ϕ( u 1 ) ] } exp{ j[ ϕ( u 2 )ϕ( u 2 ) ] } ).
Γ( u 1 , u 1 , u 2 , u 2 )= E t' ( λ 1 , u 1 ) E t' * ( λ 1 , u 1 ) E r' ( λ 2 , u 2 ) E r' * ( λ 2 , u 2 )                        × exp{ j[ ϕ( u 1 )ϕ( u 2 ) ] } exp{ j[ ϕ( u 2 )ϕ( u 1 ) ] } .
Γ( u 1 , u 1 , u 2 , u 2 )=exp( u 1 2 + u 1 2 + u 2 2 + u 2 2 4 ω 2 )exp( ( u 1 u 2 ) 2 + ( u 2 u 1 ) 2 2 l c 2 ),
exp[ ϕ i (x,y)+ ϕ i * ( x , y ) ] =exp{ (x x ) 2 +(x x )(y y )+ (y y ) 2 2 ρ i 2 },
G( x t , x r )= π 2 λ 1 4 λ 2 2 z 0 2 z 1 2 z 2 2 ABCD dyd y <t(y) t * ( y )>exp[ (y y ) 2 2 ρ 0 2 + (y y ) 2 2 ρ 2 2 ]               ×exp{ jπ λ 1 z 0 ( y 2 y 2 )+ jπ λ 1 z 2 [( x t y ) 2 ( x t y ) 2 ]}exp( S 2 4A + P 2 4B + Q 2 4C + V 2 4D ),
G( x r )= G( x t , x r )d( x t )d x t ,
<t(y) t * ( y )>= λ 1 2 T(y)δ(y y ),
G( x r )= s b π 2 λ 1 2 λ 2 2 z 0 2 z 1 2 z 2 2 ABCD dy T(y)exp( S 2 4A + P 2 4B + Q 2 4C + V 2 4D ),
G( x r )= s b π 2 λ 1 2 λ 2 2 z 0 2 z 1 2 z 2 2 ABCD exp( x r 2 2 W fov 2 ) dy T(y)exp( (ym x r ) 2 2 W psf 2 ),
G ( x r )= s b π 2 λ 1 2 λ 2 2 z 0 2 z 1 2 z 2 2 A B C D exp( x r 2 2 W cfov 2 ) dy T(y)exp( (y m x r ) 2 2 W cpsf 2 ),

Metrics