Abstract

We demonstrate a novel optical sensor for use in explosive gas detection, having a simple structure, ultrahigh sensitivity, room-temperature sensing/refreshing operation, and no local power requirements. The sensor relies on a fiber Fabry-Pérot interferometer prepared using poly(4-vinylpyridine), which induces cavity expansion upon absorption of nitrobenzene, thereby shifting the phase matching conditions of the resonating modes. An estimated sensitivity limit as low as 5 ppb was achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
    [CrossRef] [PubMed]
  2. P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
    [CrossRef] [PubMed]
  3. E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta568(1-2), 28–40 (2006).
    [CrossRef] [PubMed]
  4. Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
    [CrossRef]
  5. P. Lin and F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Adv. Mater. (Deerfield Beach Fla.)24(1), 34–51 (2012).
    [CrossRef] [PubMed]
  6. G. Lim, U. P. DeSilva, N. R. Quick, and A. Kar, “Laser optical gas sensor by photoexcitation effect on refractive index,” Appl. Opt.49(9), 1563–1573 (2010).
    [CrossRef] [PubMed]
  7. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011).
    [CrossRef] [PubMed]
  8. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
    [CrossRef]
  9. M. Niklès and F. Ravet, “Distributed fibre sensors; depth and sensitivity,” Nat. Photonics4(7), 431–432 (2010).
    [CrossRef]
  10. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express17(4), 2731–2738 (2009).
    [CrossRef] [PubMed]
  11. Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett.31(16), 2405–2407 (2006).
    [CrossRef] [PubMed]
  12. J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005).
    [CrossRef]
  13. W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010).
    [CrossRef]
  14. X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
    [CrossRef]
  15. K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
    [CrossRef] [PubMed]
  16. Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
    [CrossRef]
  17. S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
    [CrossRef]
  18. M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
    [CrossRef]
  19. P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000).
    [CrossRef] [PubMed]
  20. N. Schuld and B. A. Wolf, “Polymer‐solvent interaction parameters” in Polymer Handbook, 4th ed., J. Brandrup, E. H. Immergut, and E. A. Grulke, eds. (Wiley, New York, 2003) p. 247.

2012 (1)

P. Lin and F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Adv. Mater. (Deerfield Beach Fla.)24(1), 34–51 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011).
[CrossRef] [PubMed]

2010 (6)

G. Lim, U. P. DeSilva, N. R. Quick, and A. Kar, “Laser optical gas sensor by photoexcitation effect on refractive index,” Appl. Opt.49(9), 1563–1573 (2010).
[CrossRef] [PubMed]

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

M. Niklès and F. Ravet, “Distributed fibre sensors; depth and sensitivity,” Nat. Photonics4(7), 431–432 (2010).
[CrossRef]

W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010).
[CrossRef]

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
[CrossRef]

2009 (2)

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
[CrossRef]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

2007 (1)

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

2006 (2)

2005 (2)

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005).
[CrossRef]

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

2000 (2)

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000).
[CrossRef] [PubMed]

Albert, K. J.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Badmaev, A.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

Barra, J.

P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000).
[CrossRef] [PubMed]

Bustamante, P.

P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000).
[CrossRef] [PubMed]

Chen, P. C.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

Chen, W.

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011).
[CrossRef] [PubMed]

Comini, E.

E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta568(1-2), 28–40 (2006).
[CrossRef] [PubMed]

Cong, Y.

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

DeSilva, U. P.

Duchowicz, P. R.

M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
[CrossRef]

Fan, X.

Feng, L.

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

Fernandez, F. M.

M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
[CrossRef]

Fernandez, R.

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

Freitas, M. P.

M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
[CrossRef]

Fu, J.

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

Gao, K.

Gleason, K. K.

W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010).
[CrossRef]

Gomez de Arco, L.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

Goodarzi, M.

M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
[CrossRef]

Grattan, K. T. V.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Gu, Z.

Han, Y.

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

Huang, H.

Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
[CrossRef]

Kar, A.

Kemling, J. W.

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

Kim, B.

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

La Rosa, A.

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011).
[CrossRef] [PubMed]

Lee, Y. C.

Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
[CrossRef]

Lewis, N. S.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Li, J.

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

Lim, G.

Lim, S. H.

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

Lin, P.

P. Lin and F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Adv. Mater. (Deerfield Beach Fla.)24(1), 34–51 (2012).
[CrossRef] [PubMed]

Liu, J.

Luna-Moreno, D.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005).
[CrossRef]

McIntosh, L. D.

W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010).
[CrossRef]

Monzon-Hernandez, D.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005).
[CrossRef]

Musto, C. J.

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

Niklès, M.

M. Niklès and F. Ravet, “Distributed fibre sensors; depth and sensitivity,” Nat. Photonics4(7), 431–432 (2010).
[CrossRef]

Ocola, L.

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

Park, S.

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

Pena, M. A.

P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000).
[CrossRef] [PubMed]

Quick, N. R.

Ravet, F.

M. Niklès and F. Ravet, “Distributed fibre sensors; depth and sensitivity,” Nat. Photonics4(7), 431–432 (2010).
[CrossRef]

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011).
[CrossRef] [PubMed]

Russell, T. P.

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

Ryu, K.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

Schauer, C. L.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Sotzing, G. A.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Stitzel, S. E.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Sukcharoenchoke, S.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

Sun, T.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Sun, Y.

Suslick, K. S.

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

Tan, O. K.

Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
[CrossRef]

Tenhaeff, W. E.

W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010).
[CrossRef]

Tse, M. S.

Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
[CrossRef]

Vaid, T. P.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Villatoro, J.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005).
[CrossRef]

Walt, D. R.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Wang, C.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

Wang, J. Y.

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

Wang, X.

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

Xu, Y.

Yan, F.

P. Lin and F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Adv. Mater. (Deerfield Beach Fla.)24(1), 34–51 (2012).
[CrossRef] [PubMed]

Yan, M.

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Zhang, Z.

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

Zhou, C.

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces (1)

X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric-field-assisted dip-pen nanolithography on poly(4-vinylpyridine) (P4VP) thin films,” ACS Appl. Mater. Interfaces2(10), 2904–2909 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

W. E. Tenhaeff, L. D. McIntosh, and K. K. Gleason, “Synthesis of poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics,” Adv. Funct. Mater.20(7), 1144–1151 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou, “2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(17), 1900–1904 (2010).
[CrossRef] [PubMed]

P. Lin and F. Yan, “Organic thin-film transistors for chemical and biological sensing,” Adv. Mater. (Deerfield Beach Fla.)24(1), 34–51 (2012).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta568(1-2), 28–40 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Chem. Rev. (1)

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, and D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev.100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Fluid Phase Equilib. (1)

M. Goodarzi, P. R. Duchowicz, M. P. Freitas, and F. M. Fernandez, “Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches,” Fluid Phase Equilib.293(2), 130–136 (2010).
[CrossRef]

Int. J. Pharm. (1)

P. Bustamante, M. A. Pena, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm.194(1), 117–124 (2000).
[CrossRef] [PubMed]

Macromolecules (1)

S. Park, J. Y. Wang, B. Kim, W. Chen, and T. P. Russell, “Solvent-induced transition from micelles in solution to cylindrical microdomains in diblock copolymer thin films,” Macromolecules40(25), 9059–9063 (2007).
[CrossRef]

Nat. Chem. (1)

S. H. Lim, L. Feng, J. W. Kemling, C. J. Musto, and K. S. Suslick, “An optoelectronic nose for the detection of toxic gases,” Nat. Chem.1(7), 562–567 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Niklès and F. Ravet, “Distributed fibre sensors; depth and sensitivity,” Nat. Photonics4(7), 431–432 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Polymer (Guildf.) (1)

Y. Cong, Z. Zhang, J. Fu, J. Li, and Y. Han, “Water-induced morphology evolution of block copolymer micellar thin films,” Polymer (Guildf.)46(14), 5377–5384 (2005).
[CrossRef]

Sens. Actuators A Phys. (1)

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Sens. Actuators B Chem. (2)

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem.110(1), 23–27 (2005).
[CrossRef]

Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sens. Actuators B Chem.132(1), 239–242 (2008).
[CrossRef]

Sensors (Basel) (1)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel)11(12), 1565–1588 (2011).
[CrossRef] [PubMed]

Other (1)

N. Schuld and B. A. Wolf, “Polymer‐solvent interaction parameters” in Polymer Handbook, 4th ed., J. Brandrup, E. H. Immergut, and E. A. Grulke, eds. (Wiley, New York, 2003) p. 247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the FFPI sensing mechanism based on a chemomechanical P4VP layer. (a) The initial FFPI conditions provided a reference reflected spectrum with a fixed periodicity determined by the interference between the light beams reflected from multiple mirrors. (b) The interaction of NB molecules with the P4VP chains expanded the volume of the P4VP layer to alter the phase-matching conditions in the FFPI. The periodic spectrum then shifts to a longer periodicity, resulting in a spectral red-shift in the individual peaks. The shifts indicate the presence of gas molecules.

Fig. 2
Fig. 2

Experimental procedure used to prepare the FFPI sensor head, highlighting the simplicity and reliability of the design.

Fig. 3
Fig. 3

Characteristics of the P4VP layers. (a) FT-IR curves of a pure P4VP layer, an NB gas, and a NB + P4VP layer, demonstrating that the volume expansion arose from the ‘physical mixing’ among molecules. SEM images of (b) a P4VP-coated fiber ferrule, (d) a P4VP layer prior to NB absorption, and (d) a P4VP layer after swelling. The images provide direct support that the P4VP volume expanded in the presence of the NB gas. Ellipsometric analysis characterized the changes in the (e) refractive index and (f) physical thickness (beam path length). The insets in (e) show an image of the NB gas chamber and a schematic illustration of the experimental set-up.

Fig. 4
Fig. 4

The optical gas sensors detected the degree of NB absorption. (a) Magnified views of the spectral shifts produced by the 10 or 13 ppm NB gases. Magnified views of the spectral shifts obtained upon absorption of (b) 10 ppm or (c) 13 ppm NB gas. (d) Modulation characteristics of the sensor upon absorption of 13 ppm NB gas. The sensing and refreshing were operated at room temperature.

Metrics