Abstract

We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As2S3 chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [CrossRef]
  2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  3. S. Pan and J. Yao, “UWB-over-fiber communications: Modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  4. C. Wang, F. Zeng, and J. Yao, “All-Fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
    [CrossRef]
  5. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
    [CrossRef]
  6. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011).
    [CrossRef] [PubMed]
  7. F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
    [CrossRef]
  8. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express 15(26), 18156–18161 (2007).
    [CrossRef] [PubMed]
  9. E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
    [CrossRef]
  10. D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19(25), 24838–24848 (2011).
    [CrossRef] [PubMed]
  11. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
    [CrossRef]
  12. Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
    [CrossRef] [PubMed]
  13. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]
  14. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
    [CrossRef] [PubMed]
  15. K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express 20(2), 1184–1201 (2012).
    [CrossRef] [PubMed]
  16. Y. Yue, H. Huang, L. Zhang, J. Wang, J.-Y. Yang, O. F. Yilmaz, J. S. Levy, M. Lipson, and A. E. Willner, “UWB monocycle pulse generation using two-photon absorption in a silicon waveguide,” Opt. Lett. 37(4), 551–553 (2012).
    [CrossRef] [PubMed]
  17. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” arXiv:1211.4114 (2012).
  18. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: Harnessing slow light,” Nat. Photonics 5(12), 731–733 (2011).
    [CrossRef]
  19. M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett. 24(15), 1316–1318 (2012).
    [CrossRef]
  20. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [CrossRef] [PubMed]
  21. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  22. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
    [CrossRef]
  23. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
    [CrossRef] [PubMed]
  24. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
    [CrossRef] [PubMed]
  25. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
    [CrossRef] [PubMed]
  26. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  27. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order polezero optical filter integrated using CMOS processes,” J. Lightwave Technol. 25(1), 87–92 (2007).
    [CrossRef]
  28. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  29. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
    [CrossRef] [PubMed]

2012 (6)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett. 24(15), 1316–1318 (2012).
[CrossRef]

K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express 20(2), 1184–1201 (2012).
[CrossRef] [PubMed]

Y. Yue, H. Huang, L. Zhang, J. Wang, J.-Y. Yang, O. F. Yilmaz, J. S. Levy, M. Lipson, and A. E. Willner, “UWB monocycle pulse generation using two-photon absorption in a silicon waveguide,” Opt. Lett. 37(4), 551–553 (2012).
[CrossRef] [PubMed]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[CrossRef] [PubMed]

A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[CrossRef] [PubMed]

2011 (7)

2010 (2)

E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

S. Pan and J. Yao, “UWB-over-fiber communications: Modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

2009 (3)

2007 (6)

2006 (3)

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Abraha, S. T.

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Baker, N. J.

Beals, M. A.

Bolea, M.

Bowers, J. E.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Burla, M.

Byrnes, A.

Capmany, J.

Carothers, D. N.

Chen, Y.-K.

Chevalier, L.

Choi, D.-Y.

Dai, D.

Eggleton, B. J.

A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[CrossRef] [PubMed]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[CrossRef] [PubMed]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

Fan, S.

Finsterbusch, K.

Fu, L.

Fu, S.

Gasulla, I.

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: Harnessing slow light,” Nat. Photonics 5(12), 731–733 (2011).
[CrossRef]

Gill, D. M.

Grove, M. J.

Heideman, R.

Hile, S.

Hoekman, M.

Huang, H.

Khan, M. R.

Kimerling, L. C.

Koonen, A. M. J.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

LaRochelle, S.

M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett. 24(15), 1316–1318 (2012).
[CrossRef]

Leinse, A.

Levy, J. S.

Li, E.

Li, J.

Lin, J.

Lipson, M.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Lui, K.-S.

E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37(5), 969–971 (2012).
[CrossRef] [PubMed]

A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[CrossRef] [PubMed]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

Madden, S.

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Marpaung, D.

Mcfarlane, H.

Michel, J.

Mirshafiei, M.

M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett. 24(15), 1316–1318 (2012).
[CrossRef]

Mora, J.

Moss, D. J.

Nguyen, H. C.

Okonkwo, C. M.

Ortega, B.

Pan, S.

Pant, R.

Patel, S. S.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

Pomerene, A. T. S.

Poulton, C. G.

Rasras, M. S.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Roeloffzen, C.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Rusch, L. A.

M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett. 24(15), 1316–1318 (2012).
[CrossRef]

Sales, S.

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: Harnessing slow light,” Nat. Photonics 5(12), 731–733 (2011).
[CrossRef]

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

Shao, J.

Shum, P.

Sparacin, D. K.

Sun, J.

Sun, Q.

Ta’eed, V.

Tan, K.

Tang, M.

Tangdiongga, E.

Thevenaz, L.

Tu, K.-Y.

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Wang, C.

C. Wang, F. Zeng, and J. Yao, “All-Fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

Wang, J.

Wang, Q.

White, A. E.

Willner, A. E.

Wong, K. K. Y.

E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Wu, J.

Xu, K.

Xu, X.

E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Yang, J.-Y.

Yao, J.

S. Pan and J. Yao, “UWB-over-fiber communications: Modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, “All-Fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Yilmaz, O. F.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

Yue, Y.

Zeng, F.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, “All-Fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Zhang, L.

Zhang, W.

Zhou, E.

E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Zhuang, L.

Electron. Lett. (1)

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, “All-Fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett. 24(15), 1316–1318 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Laser & Photonics Reviews (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews 6(1), 97–114 (2012).
[CrossRef]

Nat. Photonics (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: Harnessing slow light,” Nat. Photonics 5(12), 731–733 (2011).
[CrossRef]

Opt. Express (11)

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
[CrossRef] [PubMed]

K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express 20(2), 1184–1201 (2012).
[CrossRef] [PubMed]

D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express 19(25), 24838–24848 (2011).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express 15(26), 18156–18161 (2007).
[CrossRef] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18845 (2012).
[CrossRef] [PubMed]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” arXiv:1211.4114 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposal for photonic-chip-based UWB pulse generation. (b) TE and TM mode profiles of As2S3 rib waveguide.

Fig. 2
Fig. 2

The experimental setup of the proposal for photonic-chip-based UWB pulse generation with switchable pulse shape and polarity.

Fig. 3
Fig. 3

(a), (b), (c) Temporal waveforms and (d), (e), (f) corresponding electrical spectra of generated UWB monocycles and doublets measured at output port 1, 2 and 3, respectively. The blue curves in (a), (b), and (c) depict the waveforms of obtained UWB pulses, while the red dashed curves show the inverted pulses after adjusting PC before PBS to shift either N between odd and even or θ between 45°and −45°. (g) The signal pulses measured at the output of DCF, which were then coupled with CW probe and injected into ChG chip. (h) Temporal waveforms and (i) corresponding electrical spectrum of negative doublet after propagating over 40-km SMF link. The FCC spectrum masks are added in green dashed lines.

Fig. 4
Fig. 4

Simulation results of peak power of generated monocycles as a function of mutual group time delay τ between TE and TM modes. The insets from bottom to top are the pulse shapes with of 0.2, 12 and 80 ps, respectively. The green block shows the proper region for monocycle generation.

Fig. 5
Fig. 5

Proposal for implementing PAM, BPSK, PPM, PSM and hybrid modulation format of the four into previous experimental setup

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ E( t ) E ¯ ( t ) ] E p e i ω p t [ e 0.5 α TM L+i[ φ( t )+ φ 0 ] cosθ e 0.5 α TE L+i[ φ( tτ ) ω p τ ] sinθ e 0.5 α TM L+i[ φ( t )+ φ 0 ] sinθ+ e 0.5 α TE L+i[ φ( tτ ) ω p τ ] cosθ ],
[ i o ( t ) i ¯ o ( t ) ]exp[ 0.5( α TE + α TM )L ]sin( 2θ )[ sin[ φ( t )φ( tτ )+ φ 0 + ω p τ+ π 2 ] sin[ φ( t )φ( tτ )+ φ 0 + ω p τ+ π 2 ] ].
[ i o ( t ) i ¯ o ( t ) ][ sin[ φ( t )φ( tτ ) ] ±sin[ φ( t )φ( tτ ) ] ][ [ φ( t )φ( tτ ) ] ±[ φ( t )φ( tτ ) ] ][ [ P s ( t ) P s ( tτ ) ] ±[ P s ( t ) P s ( tτ ) ] ].

Metrics