Abstract

We demonstrate an all-fiber passively Q-switched Yb-doped laser using a piece of Sm-doped fiber as a saturable absorber. The laser was pumped by two 25W, 975 nm fiber coupled diodes and Q-switching was initiated when the ASE generated in the core of the gain fiber bleached the Sm-doped saturable absorber. The laser produced 1064 nm pulses with 28 μJ pulse energy and a 200 ns pulse width at a repetition rate of 100 kHz. The pulse energy and peak power are an order of magnitude higher than what previous reported which was also in all-fiber configuration. Effects of laser parameters, such as Sm-fiber length, pump power and duration on laser performance were presented and discussed. Stable Q-switched pulses were obtained at the repetition rate varying from 10 kHz to 100 kHz, which makes this laser suitable for different applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express17(9), 7222–7227 (2009).
    [CrossRef] [PubMed]
  2. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
    [CrossRef]
  3. A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” in IEEE, Proceedings of CLEO-Europe, 515, Munich, Germany, 12–17 June (2005)
  4. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett.34(19), 2891–2893 (2009).
    [CrossRef] [PubMed]
  5. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express18(23), 23523–23528 (2010).
    [CrossRef] [PubMed]
  6. D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett.36(13), 2536–2538 (2011).
    [CrossRef] [PubMed]
  7. S. W. Moore, D. B. S. Soh, S. E. Bisson, B. D. Patterson, and W. L. Hsu, “400 µJ 79 ns amplified pulses from a Q-switched fiber laser using an Yb3+-doped fiber saturable absorber,” Opt. Express20(21), 23778–23789 (2012).
    [CrossRef] [PubMed]
  8. C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium- and samarium-doped laser,” Opt. Lett.37(4), 629–631 (2012).
    [CrossRef] [PubMed]

2012 (2)

2011 (1)

2010 (1)

2009 (2)

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Bisson, S. E.

Cheng, X.

Fang, Y.-C.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Gong, Y.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Hsu, W. L.

Huang, H.-M.

Lee, Z.-C.

Lin, C.

Lin, S.-T.

Mégret, P.

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Moore, S. W.

Patterson, B. D.

Preda, C. E.

Ravet, G.

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Shum, P. P.

Soh, D. B. S.

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Tang, M.

Tian, X.

Tsai, T.-Y.

Tsao, H.-X.

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Nat. Photonics (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” in IEEE, Proceedings of CLEO-Europe, 515, Munich, Germany, 12–17 June (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical diagram of the all-fiber Q-switched fiber laser.

Fig. 2
Fig. 2

(a) Oscilloscope trace of the Q-switching pulses at 100 kHz rate; (b) a single pulse with 30 μJ energy and a 200 ns (FWHM) pulse width.

Fig. 3
Fig. 3

Oscilloscope traces of the Q-switching pulses at repetition rate of 10 kHz (a), and 60 kHz (b).

Fig. 4
Fig. 4

A comparison of pulsed pump power (dots) and output laser pulses (solid) at 100 kHz.

Fig. 5
Fig. 5

A Q-switching pulse train with relaxation oscillation pulses pumped at 100 kHz and above 35% duty-cycle than normal operation condition.

Fig. 6
Fig. 6

Emission spectrum of the laser at 100 kHz

Fig. 7
Fig. 7

Average laser power vs. average pump power operated at 100 kHz.

Fig. 8
Fig. 8

(a) Pump duration vs. pump amplitude; and (b) laser pulse width and pulse energy versus pump power amplitude. The laser is operated at 100 kHz with a 24.5 cm long of SA.

Metrics