Abstract

We demonstrate an all-fiber passively Q-switched Yb-doped laser using a piece of Sm-doped fiber as a saturable absorber. The laser was pumped by two 25W, 975 nm fiber coupled diodes and Q-switching was initiated when the ASE generated in the core of the gain fiber bleached the Sm-doped saturable absorber. The laser produced 1064 nm pulses with 28 μJ pulse energy and a 200 ns pulse width at a repetition rate of 100 kHz. The pulse energy and peak power are an order of magnitude higher than what previous reported which was also in all-fiber configuration. Effects of laser parameters, such as Sm-fiber length, pump power and duration on laser performance were presented and discussed. Stable Q-switched pulses were obtained at the repetition rate varying from 10 kHz to 100 kHz, which makes this laser suitable for different applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Tian, M. Tang, X. Cheng, P. P. Shum, Y. Gong, and C. Lin, “High-energy wave-breaking-free pulse from all-fiber mode-locked laser system,” Opt. Express17(9), 7222–7227 (2009).
    [CrossRef] [PubMed]
  2. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
    [CrossRef]
  3. A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” in IEEE, Proceedings of CLEO-Europe, 515, Munich, Germany, 12–17 June (2005)
  4. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett.34(19), 2891–2893 (2009).
    [CrossRef] [PubMed]
  5. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express18(23), 23523–23528 (2010).
    [CrossRef] [PubMed]
  6. D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett.36(13), 2536–2538 (2011).
    [CrossRef] [PubMed]
  7. S. W. Moore, D. B. S. Soh, S. E. Bisson, B. D. Patterson, and W. L. Hsu, “400 µJ 79 ns amplified pulses from a Q-switched fiber laser using an Yb3+-doped fiber saturable absorber,” Opt. Express20(21), 23778–23789 (2012).
    [CrossRef] [PubMed]
  8. C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium- and samarium-doped laser,” Opt. Lett.37(4), 629–631 (2012).
    [CrossRef] [PubMed]

2012

2011

2010

2009

2008

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Bisson, S. E.

Cheng, X.

Fang, Y.-C.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Gong, Y.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Hsu, W. L.

Huang, H.-M.

Lee, Z.-C.

Lin, C.

Lin, S.-T.

Mégret, P.

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Moore, S. W.

Patterson, B. D.

Preda, C. E.

Ravet, G.

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Shum, P. P.

Soh, D. B. S.

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Tang, M.

Tian, X.

Tsai, T.-Y.

Tsao, H.-X.

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Nat. Photonics

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wide band-tuneable, nanotube mode-locked, fibre laser,” Nat. Photonics3(12), 738–742 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” in IEEE, Proceedings of CLEO-Europe, 515, Munich, Germany, 12–17 June (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical diagram of the all-fiber Q-switched fiber laser.

Fig. 2
Fig. 2

(a) Oscilloscope trace of the Q-switching pulses at 100 kHz rate; (b) a single pulse with 30 μJ energy and a 200 ns (FWHM) pulse width.

Fig. 3
Fig. 3

Oscilloscope traces of the Q-switching pulses at repetition rate of 10 kHz (a), and 60 kHz (b).

Fig. 4
Fig. 4

A comparison of pulsed pump power (dots) and output laser pulses (solid) at 100 kHz.

Fig. 5
Fig. 5

A Q-switching pulse train with relaxation oscillation pulses pumped at 100 kHz and above 35% duty-cycle than normal operation condition.

Fig. 6
Fig. 6

Emission spectrum of the laser at 100 kHz

Fig. 7
Fig. 7

Average laser power vs. average pump power operated at 100 kHz.

Fig. 8
Fig. 8

(a) Pump duration vs. pump amplitude; and (b) laser pulse width and pulse energy versus pump power amplitude. The laser is operated at 100 kHz with a 24.5 cm long of SA.

Metrics