Abstract

We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability. It is also shown that the presence of a small harmonic amplitude modulation of the signal can lead to generation of higher harmonics in the output intensity when operating near the instability threshold.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36, 689–691 (2011).
    [CrossRef] [PubMed]
  2. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19, 13218–13224 (2011).
    [CrossRef] [PubMed]
  3. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36, 4572–4574 (2011).
    [CrossRef] [PubMed]
  4. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20, 15710–15722 (2012).
    [CrossRef] [PubMed]
  5. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19, 3258–3271 (2011).
    [CrossRef] [PubMed]
  6. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers,” Opt. Express19, 23965–23980 (2011).
    [CrossRef] [PubMed]
  7. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19, 10180–10192 (2011).
    [CrossRef] [PubMed]
  8. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20, 11407–11422 (2012).
    [CrossRef] [PubMed]
  9. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett.37, 2382–2384 (2012).
    [CrossRef] [PubMed]
  10. K. D. Cole and P. E. Crittenden, “Steady-Periodic Heating of a Cylinder,” ASME J. Heat Transfer131, 091301 (2009).
    [CrossRef]
  11. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
    [CrossRef] [PubMed]
  12. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt.11, 2489–2494 (1972).
    [CrossRef] [PubMed]
  13. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.10, 1038–1051 (1989).
    [CrossRef]
  14. M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett.37, 4242–4244 (2012).
    [CrossRef] [PubMed]
  15. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt. Lett.32, 1566–1568 (2007).
    [CrossRef] [PubMed]
  16. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20, 5742–5753 (2012).
    [CrossRef] [PubMed]

2012 (6)

2011 (6)

2009 (1)

K. D. Cole and P. E. Crittenden, “Steady-Periodic Heating of a Cylinder,” ASME J. Heat Transfer131, 091301 (2009).
[CrossRef]

2007 (1)

1989 (1)

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.10, 1038–1051 (1989).
[CrossRef]

1972 (1)

Alkeskjold, T. T.

Broeng, J.

Brown, P. N.

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.10, 1038–1051 (1989).
[CrossRef]

Byrne, G. D.

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.10, 1038–1051 (1989).
[CrossRef]

Chen, J.

Cole, K. D.

K. D. Cole and P. E. Crittenden, “Steady-Periodic Heating of a Cylinder,” ASME J. Heat Transfer131, 091301 (2009).
[CrossRef]

Crittenden, P. E.

K. D. Cole and P. E. Crittenden, “Steady-Periodic Heating of a Cylinder,” ASME J. Heat Transfer131, 091301 (2009).
[CrossRef]

Dajani, I.

Eidam, T.

Gaida, C.

Hansen, K. R.

Hindmarsh, A. C.

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.10, 1038–1051 (1989).
[CrossRef]

Ippen, E. P.

Jansen, F.

Jauregui, C.

Jørgensen, M. M.

Karow, M.

Kärtner, F. X.

Kracht, D.

Lægsgaard, J.

Laurila, M.

Liem, A.

Limpert, J.

Neumann, J.

Otto, H.-J.

Robin, C.

Schmidt, O.

Schreiber, T.

Sickler, J. W.

Smith, A. V.

Smith, J. J.

Smith, R. G.

Steinmetz, A.

Stutzki, F.

Tünnermann, A.

Tünnermann, H.

Ward, B.

Weßels, P.

Wirth, C.

Appl. Opt. (1)

ASME J. Heat Transfer (1)

K. D. Cole and P. E. Crittenden, “Steady-Periodic Heating of a Cylinder,” ASME J. Heat Transfer131, 091301 (2009).
[CrossRef]

Opt. Express (8)

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19, 10180–10192 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19, 13218–13224 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers,” Opt. Express19, 23965–23980 (2011).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
[CrossRef] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20, 5742–5753 (2012).
[CrossRef] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20, 11407–11422 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19, 3258–3271 (2011).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20, 15710–15722 (2012).
[CrossRef] [PubMed]

Opt. Lett. (5)

SIAM J. Sci. Stat. Comput. (1)

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE: A Variable Coefficient ODE Solver,” SIAM J. Sci. Stat. Comput.10, 1038–1051 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics