Abstract

We present a novel low-coherence interferometer configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire up to eight time domain optical coherence tomography en-face images. The capabilities of the configuration are evaluated in terms of depth resolution, signal to noise ratio and crosstalk. Then the configuration is employed to demonstrate simultaneous en-face optical coherence tomography imaging at five different depths in a specimen of armadillidium vulgare.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
    [CrossRef] [PubMed]
  3. A. Podoleanu, “Route to OCT from OFS at university of Kent,” Photonic Sens1(2), 166–186 (2011).
    [CrossRef]
  4. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
    [CrossRef] [PubMed]
  5. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett.22(13), 1039–1041 (1997).
    [CrossRef] [PubMed]
  6. A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
    [CrossRef]
  7. L. Neagu, A. Bradu, L. Ma, J. W. Bloor, and A. G. Podoleanu, “Multiple-depth en face optical coherence tomography using active recirculation loops,” Opt. Lett.35(13), 2296–2298 (2010).
    [CrossRef] [PubMed]
  8. N. A. Riza and D. Psaltis, “Acousto-optic signal processors for transmission and reception of phased-array antenna signals,” Appl. Opt.30(23), 3294–3303 (1991).
    [CrossRef] [PubMed]
  9. C. Hitzenberger, P. Trost, P. W. Lo, and Q. Zhou, “Three-dimensional imaging of the human retina by high-speed optical coherence tomography,” Opt. Express11(21), 2753–2761 (2003).
    [CrossRef] [PubMed]
  10. N. A. Riza and Z. Yaqoob, “Submicrosecond speed optical coherence tomography system design and analysis by use of acousto-optics,” Appl. Opt.42(16), 3018–3026 (2003).
    [CrossRef] [PubMed]
  11. N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
    [CrossRef]
  12. H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple bragg cells,” P Soc Photo-Opt Ins 1703, 37-42 (1992).
  13. A. P. Goutzoulis, D. R. Pape, and S. V. Kulakov, Design and fabrication of acousto-optic devices (Marcel Dekker, 1994).
  14. A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express18(24), 25361–25370 (2010).
    [CrossRef] [PubMed]
  15. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]

2012 (2)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (2)

2003 (2)

2001 (1)

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

1998 (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
[CrossRef]

1997 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

N. A. Riza and D. Psaltis, “Acousto-optic signal processors for transmission and reception of phased-array antenna signals,” Appl. Opt.30(23), 3294–3303 (1991).
[CrossRef] [PubMed]

Biedermann, B. R.

Bloor, J. W.

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Bradu, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cucu, R. C.

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

Dobre, G. M.

Eigenwillig, C. M.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Gharbi, T.

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Jackson, D. A.

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett.22(13), 1039–1041 (1997).
[CrossRef] [PubMed]

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Klein, T.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, P. W.

Ma, L.

Neagu, L.

Podoleanu, A.

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
[CrossRef] [PubMed]

L. Neagu, A. Bradu, L. Ma, J. W. Bloor, and A. G. Podoleanu, “Multiple-depth en face optical coherence tomography using active recirculation loops,” Opt. Lett.35(13), 2296–2298 (2010).
[CrossRef] [PubMed]

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett.22(13), 1039–1041 (1997).
[CrossRef] [PubMed]

Porte, H.

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

Psaltis, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Riza, N. A.

Rogers, J. A.

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Trost, P.

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Wacogne, B.

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

Webb, D. J.

Wieser, W.

Yaqoob, Z.

Zhou, Q.

Appl. Opt. (2)

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
[CrossRef] [PubMed]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. G. Podoleanu, J. A. Rogers, R. C. Cucu, D. A. Jackson, B. Wacogne, H. Porte, and T. Gharbi, “Simultaneous low coherence interferometry imaging at two depths using an integrated optic modulator,” Opt. Commun.191(1-2), 21–30 (2001).
[CrossRef]

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Photonic Sens (1)

A. Podoleanu, “Route to OCT from OFS at university of Kent,” Photonic Sens1(2), 166–186 (2011).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple bragg cells,” P Soc Photo-Opt Ins 1703, 37-42 (1992).

A. P. Goutzoulis, D. R. Pape, and S. V. Kulakov, Design and fabrication of acousto-optic devices (Marcel Dekker, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic layout of the multiple-depths en-face OCT system. MO1,2,3,4: microscope objectives; AOD11, 12, 21, 22: acousto – optic deflectors; POLC: polarization controllers; XYSH: transversal scanning head equipped with mirrors to scan along X and Y; L1, L2: lenses; M: mirror; DFS: digital frequency synthesizer; DCR: dispersion compensator rod; AL: achromatic lens; BS: beamsplitter; PC: personal computer equipped with a digitizer to produce the image on the PC display.

Fig. 2
Fig. 2

Left: schematic drawing depicting the structure of the multiple optical delay element and its positioning within the fan of diffracted beams, each considered collimated; Right: photos of a delay element with four odd (A) or four even (B) channels turned on simultaneously with the channel number p written below the corresponding light spot. The delay element is fogged with water vapors to enhance the visibility of the passing optical beams.

Fig. 3
Fig. 3

Distance Δx between the FWHM boundaries of two adjacent diffracted beams due to excitation of the AOD at the frequencies noted in the inset, (for different values of the index p in Eq. (3) and d = 0) as a function of distance l from the AOD. Central wavelength: 840 nm and four optical bandwidths, black bold: 0 nm, black fine: 20 nm, red: 30 nm, blue: 40 nm.

Fig. 4
Fig. 4

Typical frequency spectrum of the photodetected signal when all eight RF signals are applied simultaneously to the pair of AODs in the reference path. Left: reference arm length adjusted for the 4th (79 MHz) channel; Right: the reference arm length was subsequently adjusted in steps of (p-1)δ, where δ = 43 μm, obtaining each time, a photodetected interference signal pulsating at νp = 8, 18, 28, 38, 48, 58, 68 and 78 MHz and then superimposing the RF spectra from all eight channels.

Fig. 5
Fig. 5

Normalized autocorrelation function for the compound source used in the experiments. The dots show measured values and the solid line is obtained by spline fitting them.

Fig. 6
Fig. 6

A) A montage of en-face OCT images of armadillidium vulgare dorsal side simultaneously acquired with five imaging channels operating at 69, 74, 79, 84 and 89 MHz. B). Superimposed maximum values of eight simultaneously generated en-face images of a tilted 10 pence coin with all eight imaging channels operating simultaneously. z values represent depths of the en-face OCT images in relation to the depth of the first image, arbitrarily set at z = 0, and where the steps in depth are set by the multiple delay element, as measured in air.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ Bragg = λ 0 2Λ
θ D =2 θ Bragg = λ 0 f ν
Δx=l( tan ( λ 0 Δλ 2 ) f p+1 ν tan ( λ 0 + Δλ 2 ) f p ν )d

Metrics