Abstract

We present a novel approach for achieving tightly concentrated optical field by a hybrid photonic-plasmonic device in an integrated platform, which is a triangle-shaped metal taper mounted on top of a dielectric waveguide. This device, which we call a plasmomic light concentrator (PLC), can achieve vertical coupling of light energy from the dielectric waveguide to the plasmonic region and light focusing into the apex of the metal taper(at the scale ∼ 10nm) at the same time. For a demonstration of the PLCs presented in this paper, we numerically investigate the performance of a gold taper on a Si3N4 waveguide at working wavelengths around 800nm. We show that three major effects (mode beat, nanofocusing, and weak resonance) interplay to generate this light concentration phenomenon and govern the performance of the device. Combining these effects, the PLC can be designed to be super compact while maintaining high efficiency over a wide band. In particular, we demonstrate that under optimized size parameters and wavelength a field concentration factor (FCF), which is the ratio of the norm of the electric field at the apex over the average norm of the electric field in the inputting waveguide, of about 13 can be achieved with the length of the device less than 1μm for a moderate tip radius 20nm. Moreover, we show that a FCF of 5 – 10 is achievable over a wavelength range of 700 – 1100nm with the length of the device further reduced (to about 400nm).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
    [CrossRef]
  2. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
    [CrossRef] [PubMed]
  3. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
    [CrossRef] [PubMed]
  4. L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
    [CrossRef] [PubMed]
  5. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17, 13150–13157 (2009).
    [CrossRef]
  6. L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997).
    [CrossRef]
  7. K. V. Nerkararyan, “Superfocusing on a surface polariton in a wedge-like structure,” Phys. Lett. A237, 103–105 (1997).
    [CrossRef]
  8. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000).
    [CrossRef]
  9. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
    [CrossRef] [PubMed]
  10. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2, 31–37 (2007).
    [CrossRef]
  11. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007).
    [CrossRef]
  12. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
    [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35, 541–543 (2009).
    [CrossRef]
  14. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
    [CrossRef] [PubMed]
  15. V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
    [CrossRef]
  16. Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
    [CrossRef]
  17. K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express18, 787–798 (2010).
    [CrossRef] [PubMed]
  18. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
    [CrossRef] [PubMed]
  19. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
    [CrossRef] [PubMed]
  20. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008).
    [CrossRef]
  21. A. Normatov, P. Ginzburg1, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18, 14079–14086 (2009).
    [CrossRef]
  22. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009).
    [CrossRef] [PubMed]
  23. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
    [CrossRef]
  24. M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
    [CrossRef]
  25. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot,” Opt. Express16, 20142–20148 (2008).
    [CrossRef] [PubMed]
  26. B. Desiatov, I. Goykhman, and U. Levy, “On-chip focusing of light by metallic nanotip,” Frontiers in Optics, OSA Technical Digest (CD) (OSA, 2010), paper FThB7.
  27. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009).
    [CrossRef] [PubMed]
  28. B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express19, 13150–13157 (2011).
    [CrossRef] [PubMed]
  29. Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.
  30. X. He, L Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19, 12865–12872 (2011).
    [CrossRef] [PubMed]
  31. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
    [CrossRef]
  32. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
    [CrossRef]
  33. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009).
    [CrossRef] [PubMed]
  34. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010).
    [CrossRef]
  35. M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
    [CrossRef]
  36. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, invited for Focus Issue: Collective Phenomena, 22292–22304 (2011).
    [CrossRef] [PubMed]
  37. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998).
    [CrossRef]

2012 (1)

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

2011 (4)

2010 (6)

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010).
[CrossRef]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
[CrossRef]

K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express18, 787–798 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

2009 (9)

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35, 541–543 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17, 13150–13157 (2009).
[CrossRef]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg1, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18, 14079–14086 (2009).
[CrossRef]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009).
[CrossRef] [PubMed]

2008 (4)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008).
[CrossRef]

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot,” Opt. Express16, 20142–20148 (2008).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
[CrossRef]

2007 (3)

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2, 31–37 (2007).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

2005 (2)

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
[CrossRef] [PubMed]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
[CrossRef]

2000 (1)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000).
[CrossRef]

1998 (1)

1997 (2)

L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997).
[CrossRef]

K. V. Nerkararyan, “Superfocusing on a surface polariton in a wedge-like structure,” Phys. Lett. A237, 103–105 (1997).
[CrossRef]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
[CrossRef] [PubMed]

Abushagur, M. A. G.

Adibi, A.

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, invited for Focus Issue: Collective Phenomena, 22292–22304 (2011).
[CrossRef] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.

Alabastri, A.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Alonso-González, P.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Arzubiaga, L.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Bartal, G.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
[CrossRef]

Berkovitch, N.

Bian, R. X.

L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35, 541–543 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Brown, D. E.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Casanova, F.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Chamanzar, M.

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, invited for Focus Issue: Collective Phenomena, 22292–22304 (2011).
[CrossRef] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
[CrossRef] [PubMed]

Choi, H.

Chuvilin, A.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Cojoc, G.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Dai, D.

De Angelis, F.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express19, 13150–13157 (2011).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010).
[CrossRef]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “On-chip focusing of light by metallic nanotip,” Frontiers in Optics, OSA Technical Digest (CD) (OSA, 2010), paper FThB7.

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

Di Fabrizio, E.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Djurisic, A. B.

Donnorso, M. P.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Ebbesen, T. W.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

Eftekhar, A. A.

Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.

Elazar, J. M.

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Fang, Z.

Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
[CrossRef]

Francardi, M.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

García-Vidal, F. J.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Ginzburg1, P.

Gosciniak, J.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express19, 13150–13157 (2011).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010).
[CrossRef]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “On-chip focusing of light by metallic nanotip,” Frontiers in Optics, OSA Technical Digest (CD) (OSA, 2010), paper FThB7.

Gramotnev, D. K.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007).
[CrossRef]

Guckenberger, R.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2, 31–37 (2007).
[CrossRef]

He, S.

He, X.

Hillenbrand, R.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Hiller, J. M.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Hua, J.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Hueso, L. E.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Issa, N. A.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2, 31–37 (2007).
[CrossRef]

Jun, Y.

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Katayama, K.

Kimball, C. W.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Kuipers, L.

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008).
[CrossRef]

Lerman, G. M.

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

Levy, U.

B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express19, 13150–13157 (2011).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010).
[CrossRef]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg1, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18, 14079–14086 (2009).
[CrossRef]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17, 13150–13157 (2009).
[CrossRef]

B. Desiatov, I. Goykhman, and U. Levy, “On-chip focusing of light by metallic nanotip,” Frontiers in Optics, OSA Technical Digest (CD) (OSA, 2010), paper FThB7.

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

Lu, Z.

Luo, Y.

Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.

Majewski, M. L.

Malerba, M.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000).
[CrossRef]

Martín-Moreno, L.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Momeni, B.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

Nam, S.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
[CrossRef] [PubMed]

Nerkararyan, K. V.

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35, 541–543 (2009).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000).
[CrossRef]

K. V. Nerkararyan, “Superfocusing on a surface polariton in a wedge-like structure,” Phys. Lett. A237, 103–105 (1997).
[CrossRef]

Normatov, A.

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997).
[CrossRef]

Oh, S.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
[CrossRef]

Pearson, J.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007).
[CrossRef]

Polman, A.

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008).
[CrossRef]

Qi, H.

Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
[CrossRef]

Rakic, A. D.

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Rodrigo, S. G.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Soltani, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

Tanaka, K.

Tanaka, M.

Verhagen, E.

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008).
[CrossRef]

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007).
[CrossRef]

Vlasko-Vlasov, V. K.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

Wahsheh, R. A.

Wang, C.

Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
[CrossRef]

Welp, U.

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Xie, X.S.

L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997).
[CrossRef]

Yanai, A.

Yang, L

Yang, R.

Yang, T.

Yegnanarayanan, S.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

Yin, L

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Zaccaria, R. P.

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
[CrossRef] [PubMed]

Zhang, X.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

Zhu, X.

Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B101, 263–271 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97, 141106 (2010).
[CrossRef]

J. Appl. Phys. (2)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101, 104312 (2007).
[CrossRef]

Microelectron. Eng. (1)

M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. P. Donnorso, R. P. Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204 (2012).
[CrossRef]

Nano Lett. (7)

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on-chip nanofocusing applications,” Nano Lett.9, 3381–3386 (2009).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett.9, 1278–1282 (2009).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10, 1369–1373 (2010).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett.7, 2784–2788 (2007).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5, 1726–1729 (2005).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9, 4320–4325 (2009).
[CrossRef] [PubMed]

L Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005).
[CrossRef] [PubMed]

Nat. Materials (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Materials9, 193–204 (2010).
[CrossRef]

Nat. Photonics (1)

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011).
[CrossRef]

New J. Phys. (2)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10, 105018 (2008).
[CrossRef]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys.11, 113043 (2009).
[CrossRef]

Opt. Express (10)

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 766–788 (2008).
[CrossRef]

A. Normatov, P. Ginzburg1, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18, 14079–14086 (2009).
[CrossRef]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17, 7519–7524 (2009).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17, 13150–13157 (2009).
[CrossRef]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009).
[CrossRef] [PubMed]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, invited for Focus Issue: Collective Phenomena, 22292–22304 (2011).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express19, 13150–13157 (2011).
[CrossRef] [PubMed]

X. He, L Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19, 12865–12872 (2011).
[CrossRef] [PubMed]

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficiently squeezing near infrared light into a 21nm-by-24nm nanospot,” Opt. Express16, 20142–20148 (2008).
[CrossRef] [PubMed]

K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express18, 787–798 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Lett. A (1)

K. V. Nerkararyan, “Superfocusing on a surface polariton in a wedge-like structure,” Phys. Lett. A237, 103–105 (1997).
[CrossRef]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width Bound modes of asymmetric structures,” Phys. Rev. B63, 125417 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79, 645–648 (1997).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Plasmonics (2)

Z. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics5, 201–212 (2010).
[CrossRef]

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics2, 31–37 (2007).
[CrossRef]

Other (2)

Y. Luo, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “On-chip nanofocusing using a hybrid plasmonic-dieletric tapered waveguide,” Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (OSA, 2011), paper ITuD7.

B. Desiatov, I. Goykhman, and U. Levy, “On-chip focusing of light by metallic nanotip,” Frontiers in Optics, OSA Technical Digest (CD) (OSA, 2010), paper FThB7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of an compact PLC that is a hybrid photonic-plasmonic structure with a gold triangle taper integrated on top of a Si3N4 ridge waveguide with a SiO2 buffer layer. (b) The top view of this hybrid structure.

Fig. 2
Fig. 2

(a) The cross section and top view of a hybrid photonic-plasmonic waveguide. (b) Two supermodes (HTM,0 and HTM,1) come from the superposition of the fundamental TM-like mode (TM0) of the purely photonic waveguide and the fundamental symmetric mode (S0) of the purely plasmonic waveguide. (c) Two supermodes (HTE,0 and HTE,1) come from the superposition of the fundamental TE-like mode (TE0) of the purely photonic waveguide and the fundamental asymmetric mode (A0) of the purely plasmonic waveguide. The electric field lines are sketched for these modes.

Fig. 3
Fig. 3

(a) The normalized electric field profiles of TM0, S0, HTM,0 and HTM,1. (b) The normalized electric field profiles of TE0, A0, HTE,0 and HTE,1. The width w of the Au layer is 620nm. The wavelength λ is 800nm. The effective index neff for each mode is listed.

Fig. 4
Fig. 4

Dispersion characteristic of the four supermodes (HTM,0, HTM,1, HTE,0 and HTE,1) of the hybrid photonic-plasmonic waveguide in Fig. 2(a) in the form of the real and imaginary parts of the mode effective index versus the width w of the Au strip. All other dimensions are the same as those in Fig. 2(a). The wavelength λ is 800nm.

Fig. 5
Fig. 5

The normalized electric field profiles of HTM,0 and HTM,1. The width w of the Au strip is 60nm. While the HTM,0 field in highly concentrated in the metallic region, the HTM,1 field has considerable strength outside the metallic region and becomes more similar to the TM0 mode of the corresponding purely photonic waveguide.

Fig. 6
Fig. 6

Normalized electric field patterns in the planes horizontally (Y = 320nm) and vertically (X = 0) cutting through the Au layer. The length L of the Au triangle is 900nm, and the width W is 400nm. The calculated field concentration factor (FCF) is 12.6 with the radius of curvature a at the tip being 20nm. Q is the apex point of the triangular taper.

Fig. 7
Fig. 7

FCF versus length L of the Au triangle: the maximum width W is 300nm for the blue solid curve and 400nm for the red dashed curve. The wavelength λ is 800nm. The radius of curvature a at the tip is 20nm. All other parameters are the same as for the tapered structure shown in Fig. 6.

Fig. 8
Fig. 8

Spectra of transmission T, reflection R and the sum of the two for the Au taper length (a) L = 1μm, and (b) L = 2μm. The maximum width W of the taper is 400nm. The radius of curvature a at the tip is 20nm.

Fig. 9
Fig. 9

Spectra of transmission and FCF for three groups of lengths of the Au triangle (a) 0.4μm, 0.425μm and 0.45μm, (b) 1μm, 1.025μm and 1.05μm, and (c) 2μm, 2.025μm and 2.05μm. The width W of the triangle is 400nm. The radius of curvature a at the tip is 20nm. All other parameters are the same as for the tapered structure shown in Fig. 6.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

BL ( w ) = λ Real ( n eff ( H TM , 0 ( w ) ) n eff ( H TM , 1 ( w ) ) ) ,
| E 0 | = 2 η 0 n A D S ¯ z = 2 η 0 n A D Re ( 1 2 ( E × H * ) z ) .
FSR ( w ) = λ 2 Real ( n eff ( H TM , 0 ( w ) ) ) .

Metrics