Abstract

The influence of three-photon absorption (3PA) on cross-phase modulation (XPM) effect in the mid-infrared (IR) region is theoretically investigated in silicon-on-sapphire (SOS) waveguides. It is found that the 3PA-induced nonlinear losses in the SOS waveguide will be considerable for the pulse propagation in the wavelength region of 2300 nm-3300 nm when the pump peak intensity is high enough. For the XPM process, the 3PA and 3PA-induced free-carrier effects can affect the spectrum and temporal profiles of the pump and signal pulses for sufficiently high pump peak intensities. Moreover, the XPM-induced frequency shift of signal spectrum is also discussed with different pump peak intensities, and the XPM-induced blue and red shifts are reduced due to 3PA.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]
  2. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
    [CrossRef]
  3. E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
    [CrossRef] [PubMed]
  4. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides,” Opt. Express20(8), 8920–8928 (2012).
    [CrossRef] [PubMed]
  5. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
    [CrossRef]
  6. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  7. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol.23(6), 2094–2102 (2005).
    [CrossRef]
  8. T. K. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express13(19), 7298–7303 (2005).
    [CrossRef] [PubMed]
  9. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express14(25), 12380–12387 (2006).
    [CrossRef] [PubMed]
  10. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  11. J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide,” Appl. Phys. B104(4), 867–871 (2011).
    [CrossRef]
  12. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides,” Appl. Opt.50(28), 5430–5436 (2011).
    [CrossRef] [PubMed]
  13. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express19(24), 24730–24737 (2011).
    [CrossRef] [PubMed]
  14. J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguide,” Opt. Express20, 3490–3498 (2012).
  15. M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express20(14), 15899–15907 (2012).
    [CrossRef] [PubMed]
  16. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
    [CrossRef]
  17. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
    [CrossRef]
  18. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011).
    [CrossRef] [PubMed]
  19. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  20. A. C. Peacock, “Mid-IR soliton compression in silicon optical fibers and fiber tapers,” Opt. Lett.37(5), 818–820 (2012).
    [CrossRef] [PubMed]
  21. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
    [CrossRef] [PubMed]
  22. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
    [CrossRef] [PubMed]
  23. Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
    [CrossRef]
  24. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).
  25. O. Boyraz, Y. Huang, and X. Sang, “Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths,” Proc. SPIE8431, 843104, 843104-12 (2012).
    [CrossRef]
  26. S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett.93(13), 131102 (2008).
    [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  28. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett.34(4), 476–478 (2009).
    [CrossRef] [PubMed]
  29. J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express18(11), 11514–11523 (2010).
    [CrossRef] [PubMed]
  30. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm,” Opt. Express14(18), 8336–8346 (2006).
    [CrossRef]
  31. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express15(3), 1135–1146 (2007).
    [CrossRef] [PubMed]
  32. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
    [CrossRef] [PubMed]
  33. H.-S. Hsieh, K.-M. Feng, and M.-C. M. Lee, “Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators,” Opt. Express18(9), 9613–9621 (2010).
    [CrossRef] [PubMed]
  34. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  35. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express16(26), 21209–21214 (2008).
    [CrossRef] [PubMed]
  36. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  37. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett.32(4), 391–393 (2007).
    [CrossRef] [PubMed]
  38. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  39. T. E. Murphy, software available at http://www.photonics.umd.edu .
  40. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express16(14), 10596–10610 (2008).
    [CrossRef] [PubMed]
  41. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007).
    [CrossRef]
  42. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
    [CrossRef] [PubMed]
  43. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
    [CrossRef]
  44. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32(14), 2031–2033 (2007).
    [CrossRef] [PubMed]

2012 (6)

2011 (8)

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide,” Appl. Phys. B104(4), 867–871 (2011).
[CrossRef]

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides,” Appl. Opt.50(28), 5430–5436 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express19(24), 24730–24737 (2011).
[CrossRef] [PubMed]

2010 (10)

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

H.-S. Hsieh, K.-M. Feng, and M.-C. M. Lee, “Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators,” Opt. Express18(9), 9613–9621 (2010).
[CrossRef] [PubMed]

J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express18(11), 11514–11523 (2010).
[CrossRef] [PubMed]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
[CrossRef] [PubMed]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

2009 (2)

2008 (3)

2007 (5)

2006 (5)

2005 (3)

Adas, E.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

Agrawal, G. P.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Asher, W.

Assefa, S.

Astar, W.

Atanackovic, P.

Baehr-Jones, T.

Baets, R.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Boyraz, O.

O. Boyraz, Y. Huang, and X. Sang, “Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths,” Proc. SPIE8431, 843104, 843104-12 (2012).
[CrossRef]

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Carter, G. M.

Chen, X.

Chen, Y. M.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

Claps, R.

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Colman, P.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

Combrie, S.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

Dadap, J. I.

Davoyan, A. R.

Dekker, R.

Dimitropoulos, D.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett.93(13), 131102 (2008).
[CrossRef]

Driessen, A.

Driscoll, J. B.

Dumon, P.

Duvall, S. G.

Eggleton, B. J.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

Feng, K.-M.

Forst, M.

Foster, M. A.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Fung, C. K. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Gao, S.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Green, W. M.

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

Grillet, C.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Hasama, T.

Hochberg, M.

Hsieh, H.-S.

Hsieh, I.-W.

Huang, N.

Huang, Y.

O. Boyraz, Y. Huang, and X. Sang, “Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths,” Proc. SPIE8431, 843104, 843104-12 (2012).
[CrossRef]

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Hudson, D.

Husko, C.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

Ilic, R.

Ishikawa, H.

Jackson, S. D.

Jalali, B.

Johnson, T. J.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kalyoncu, S. K.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Kamei, T.

Kawanishi, T.

Kawashima, H.

Kintaka, K.

Kivshar, Y. S.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Kuyken, B.

Lee, J. Y.

Lee, M.-C. M.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Li, F.

Li, X.

Liang, T. K.

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, H.

Liu, X.

Madden, S. J.

Magi, E.

Manolatou, C.

McNab, S. J.

Michael, C. P.

Moghe, Y.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Moormann, C.

Mori, M.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Moss, D. J.

Niehusmann, J.

Nunes, L.

O’Brien, C.

Ogasawara, T.

Okano, M.

Osgood, R. M.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011).
[CrossRef] [PubMed]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express15(3), 1135–1146 (2007).
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express14(25), 12380–12387 (2006).
[CrossRef] [PubMed]

Painter, O. J.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Peacock, A. C.

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett.93(13), 131102 (2008).
[CrossRef]

Penkov, B.

Perahia, R.

Priem, G.

Qian, F.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Raghunathan, V.

Read, A.

Roelkens, G.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Rossi, A. D.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett.93(13), 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

Sagnes, I.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

Sakakibara, Y.

Sakamoto, T.

Sang, X.

O. Boyraz, Y. Huang, and X. Sang, “Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths,” Proc. SPIE8431, 843104, 843104-12 (2012).
[CrossRef]

Sasagawa, K.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Shoji, Y.

Song, Q.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Spott, A.

Suda, S.

Sun, Q.

Tien, E. K.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

Tsang, H.

Tsang, H. K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

Tsuchiya, M.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

Van Thourhout, D.

Vlasov, Y. A.

Wahlbrink, T.

Wang, Z.

Wen, J.

Wong, C. W.

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

Yildirim, D.

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

Yin, L.

Zhang, J.

Zhao, W.

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguide,” Opt. Express20, 3490–3498 (2012).

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide,” Appl. Phys. B104(4), 867–871 (2011).
[CrossRef]

Zhu, M.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Influence of the initial chirp on the supercontinuum generation in silicon-on-insulator waveguide,” Appl. Phys. B104(4), 867–871 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Huang, E. K. Tien, S. Gao, S. K. Kalyoncu, Q. Song, F. Qian, E. Adas, D. Yildirim, and O. Boyraz, “Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides,” Appl. Phys. Lett.99(18), 181122 (2011).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300-3300 nm,” Appl. Phys. Lett.93(13), 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

IEEE Photon. J. (1)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides,” IEEE Photon. J.4, 104–113 (2012).

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Nat. Photonics (5)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010).
[CrossRef]

P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4(12), 862–868 (2010).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express (22)

T. K. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express13(19), 7298–7303 (2005).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm,” Opt. Express14(18), 8336–8346 (2006).
[CrossRef]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express14(25), 12380–12387 (2006).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express19(24), 24730–24737 (2011).
[CrossRef] [PubMed]

J. Wen, H. Liu, N. Huang, Q. Sun, and W. Zhao, “Widely tunable femtosecond optical parametric oscillator based on silicon-on-insulator waveguide,” Opt. Express20, 3490–3498 (2012).

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express16(14), 10596–10610 (2008).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express16(26), 21209–21214 (2008).
[CrossRef] [PubMed]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

H.-S. Hsieh, K.-M. Feng, and M.-C. M. Lee, “Study of cross-phase modulation and free-carrier dispersion in silicon photonic wires for Mamyshev signal regenerators,” Opt. Express18(9), 9613–9621 (2010).
[CrossRef] [PubMed]

J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express18(11), 11514–11523 (2010).
[CrossRef] [PubMed]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
[CrossRef] [PubMed]

E. K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express18(21), 21981–21989 (2010).
[CrossRef] [PubMed]

X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express15(3), 1135–1146 (2007).
[CrossRef] [PubMed]

Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides,” Opt. Express20(8), 8920–8928 (2012).
[CrossRef] [PubMed]

M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express20(14), 15899–15907 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

O. Boyraz, Y. Huang, and X. Sang, “Silicon on sapphire and SOI photonic devices for mid-infrared and near-IR wavelengths,” Proc. SPIE8431, 843104, 843104-12 (2012).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

T. E. Murphy, software available at http://www.photonics.umd.edu .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Left: SOS rib waveguide structure; Right: Ey and Ex electric field components of the SOS waveguide at the wavelength of 2300 nm.

Fig. 2
Fig. 2

(a) Effective and group indices and (b) second and third-order dispersion of the SOS waveguide as a function of wavelength.

Fig. 3
Fig. 3

The XPM-induced frequency chirp for a signal pulse with τd = 0 and τd = δ, respectively. The input center wavelength of the signal pulse is 2400 nm, and signal pulse shape is shown by a dashed line.

Fig. 4
Fig. 4

Output pump peak intensity versus input pump peak intensity.

Fig. 5
Fig. 5

Output spectra of the pump pulse with corresponding temporal profiles for different pump peak intensities under different conditions: 3PA = 0, 3PA only, 3PA + FCA, and full (3PA + FCA + FCD).

Fig. 6
Fig. 6

Output spectra and temporal profiles of the signal pulse under different conditions for τd = 0 and τd = δ, respectively.

Fig. 7
Fig. 7

Output spectra with different pump peak intensities for τd = 0 and τd = δ, respectively.

Fig. 8
Fig. 8

Output spectra with different input signal center wavelengths when the pump peak intensity is 6.67 GW/cm2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A p z + i β 2p 2 2 A p T 2 β 3p 6 3 A p T 3 =i γ p ( | A p | 2 +2 | A s | 2 ) A p β 3PA 2 A eff 2 | A p | 4 A p 1 2 ( α l + α fcp ) A p +i 2π λ p Δ n fcp A p ,
A s z +d A s T + i β 2s 2 2 A s T 2 β 3s 6 3 A s T 3 =i γ s ( | A s | 2 +2 | A p | 2 ) A s β 3PA 2 A eff 2 | A s | 4 A s 1 2 ( α l + α fcs ) A s +i 2π λ s Δ n fcs A s ,
N c t = β 3PA 3h υ p | A p | 6 A eff 3 N c τ c ,
A p ( 0,T )= P p exp[ ( T T d ) 2 2 T 0 2 ], A s ( 0,T )= P s exp[ T 2 2 T 0 2 ],
ϕ s ( L,τ )= γ s P p L π δ [ erf( τ τ d +δ )erf( τ τ d ) ],
δ υ s (L,τ)= 1 2π ϕ s T = γ s P p L π T 0 δ { exp[ ( τ τ d +δ ) 2 ]exp[ ( τ τ d ) 2 ] }.

Metrics