Abstract

In the paper, a 2 µm high energy fs fiber laser and amplification system is presented based on Tm doped fibers. The seed laser was designed to generate pulse train at 2024 nm at a repetition rate of 2.5 MHz. An AOM was used as a pulse picker to further lower the repetition rate down to 100 kHz. Two-stage fiber pre-amplifiers and a high energy large mode area (LMA) fiber amplifier were used to boost pulse energy up to 54 µJ before pulse compressor with chirped pulse amplification technique. After compressor, pulse energy of 36.7µJ and pulse duration of 910 fs and were obtained.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
    [CrossRef]
  2. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).
  3. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
    [CrossRef] [PubMed]
  4. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
    [CrossRef]
  5. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
    [CrossRef]
  6. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67(1), 19–21 (1995).
    [CrossRef]
  7. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33(12), 1336–1338 (2008).
    [CrossRef] [PubMed]
  8. J. Liu, Q. Wang, and P. Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in CLEO:2012-Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A. 76.
  9. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 mum laser with highly thulium-doped silicate fiber,” Opt. Lett.34(23), 3616–3618 (2009).
    [CrossRef] [PubMed]
  10. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express13(19), 7424–7431 (2005).
    [CrossRef] [PubMed]
  11. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier,” Opt. Lett.35(17), 2991–2993 (2010).
    [CrossRef] [PubMed]
  12. L. M. Yang, P. Wan, V. Protopopov, and J. Liu, “2 µm femtosecond fiber laser at low repetition rate and high pulse energy,” Opt. Express20(5), 5683–5688 (2012).
    [CrossRef] [PubMed]

2012

2010

F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier,” Opt. Lett.35(17), 2991–2993 (2010).
[CrossRef] [PubMed]

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

2009

2008

2005

1995

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67(1), 19–21 (1995).
[CrossRef]

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Arpin, P.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

Chen, M.-C.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

Chernov, A. I.

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Dianov, E. M.

Fermann, M. E.

Fuchs, P.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Geng, J.

Gerschuetz, F.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67(1), 19–21 (1995).
[CrossRef]

Haxsen, F.

Hildebrandt, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Imeshev, G.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67(1), 19–21 (1995).
[CrossRef]

Jiang, S.

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

Koeth, J.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Konov, V. I.

Kracht, D.

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Liu, J.

Lobach, A. S.

Luo, T.

Miller, R. J. D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Morgner, U.

Murnane, M. M.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Naehle, L.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67(1), 19–21 (1995).
[CrossRef]

Neumann, J.

Obraztsova, E. D.

Popmintchev, T.

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

Protopopov, V.

Solodyankin, M. A.

Tausenev, A. V.

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

Wan, P.

Wandt, D.

Wang, Q.

Yang, L. M.

Zeller, W.

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Appl. Phys. Lett.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67(1), 19–21 (1995).
[CrossRef]

Laser Phys.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

Nat. Photonics

T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4(12), 822–832 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

PLoS ONE

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS ONE5(9), e13053 (2010).
[CrossRef] [PubMed]

Sensors (Basel Switzerland)

W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB lasers between 760 nm and 16 μm for sensing applications,” Sensors (Basel Switzerland)10(4), 2492–2510 (2010).
[CrossRef]

Other

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).

J. Liu, Q. Wang, and P. Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in CLEO:2012-Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A. 76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Systematic diagram of 2 µm seed and power amplifier system.

Fig. 2
Fig. 2

First stage of amplification (pre-amplifier 1) with fiber stretcher.

Fig. 3
Fig. 3

Spectrum of pulses after first stage pre-amplifier.

Fig. 4
Fig. 4

Output pulse energy versus pump power of the second stage

Fig. 5
Fig. 5

Spectrum of output pulses at various pulse energy levels after pre-amplifier 2.

Fig. 6
Fig. 6

Setup of high energy amplifier

Fig. 7
Fig. 7

Output pulse energy as a function of pump power in the final energy amplifier.

Fig. 8
Fig. 8

Output spectrum at various pulse energy levels before compressor

Fig. 9
Fig. 9

Autocorrelation trace of compressed pulse with pulse energy of 54 µJ before pulse compressor.

Metrics