Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
[Crossref]
N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]
R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref]
[PubMed]
A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801–5808 (2007).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt. 46, 4923–4931 (2007).
[Crossref]
[PubMed]
J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679 (2007).
[Crossref]
[PubMed]
X. Xun, D. J. Cho, and R. W. Cohn, “Spiking voltages for faster switching of nematic liquid-crystal light modulators,” Appl. Opt. 45, 3136–3143 (2006).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
A. K. Kirby and G. D. Love, “Fast, large and controllable phase modulation using dual frequency liquid crystals,” Opt. Express 12, 1470–1475 (2004).
[Crossref]
[PubMed]
Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. Wu, and S.-T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12, 6382–6389 (2004).
[Crossref]
[PubMed]
S.-T. Wu and C.-S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[Crossref]
S.-T. Wu, “Phase retardation dependent optical response time of parallel-aligned liquid crystals,” J. Appl. Phys. 60, 1836–1838 (1986).
[Crossref]
P. Bos and K. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]
H. K. Bucher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[Crossref]
B. Wang, G. Zhang, A. Glushchenko, J. West, P. Bos, and P. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt. 44, 7754–7759 (2005).
[Crossref]
[PubMed]
P. Bos and K. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]
H. K. Bucher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[Crossref]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt. 46, 4923–4931 (2007).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt. 46, 4923–4931 (2007).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18, 11250–11263 (2010).
[Crossref]
[PubMed]
D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), p. DSu2C.3.
D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
[Crossref]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18, 11250–11263 (2010).
[Crossref]
[PubMed]
D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), p. DSu2C.3.
G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), chap. 1, pp. 1–30.
[Crossref]
H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37, 3324–3326 (2012).
[Crossref]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
H. K. Bucher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[Crossref]
P. Bos and K. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]
G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), chap. 1, pp. 1–30.
[Crossref]
G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), chap. 1, pp. 1–30.
[Crossref]
G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particleposition and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37, 3324–3326 (2012).
[Crossref]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), chap. 1, pp. 1–30.
[Crossref]
G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particleposition and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37, 3324–3326 (2012).
[Crossref]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18, 11250–11263 (2010).
[Crossref]
[PubMed]
D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), p. DSu2C.3.
N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]
H. K. Bucher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[Crossref]
S.-T. Wu and C.-S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[Crossref]
Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. Wu, and S.-T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12, 6382–6389 (2004).
[Crossref]
[PubMed]
S.-T. Wu and C.-S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[Crossref]
S.-T. Wu, “Phase retardation dependent optical response time of parallel-aligned liquid crystals,” J. Appl. Phys. 60, 1836–1838 (1986).
[Crossref]
K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt. 46, 4923–4931 (2007).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37, 3324–3326 (2012).
[Crossref]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
[Crossref]
[PubMed]
X. Xun, D. J. Cho, and R. W. Cohn, “Spiking voltages for faster switching of nematic liquid-crystal light modulators,” Appl. Opt. 45, 3136–3143 (2006).
[Crossref]
[PubMed]
D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 2345–2355 (2001).
[Crossref]
B. Wang, G. Zhang, A. Glushchenko, J. West, P. Bos, and P. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt. 44, 7754–7759 (2005).
[Crossref]
[PubMed]
J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667–5679 (2007).
[Crossref]
[PubMed]
K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt. 46, 4923–4931 (2007).
[Crossref]
[PubMed]
H. K. Bucher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[Crossref]
S.-T. Wu, “Phase retardation dependent optical response time of parallel-aligned liquid crystals,” J. Appl. Phys. 60, 1836–1838 (1986).
[Crossref]
S.-T. Wu and C.-S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[Crossref]
P. Bos and K. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]
N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]
K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169–4174 (2006).
[Crossref]
[PubMed]
A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801–5808 (2007).
[Crossref]
[PubMed]
A. K. Kirby and G. D. Love, “Fast, large and controllable phase modulation using dual frequency liquid crystals,” Opt. Express 12, 1470–1475 (2004).
[Crossref]
[PubMed]
Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. Wu, and S.-T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12, 6382–6389 (2004).
[Crossref]
[PubMed]
R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[Crossref]
[PubMed]
M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18, 11250–11263 (2010).
[Crossref]
[PubMed]
Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express 17, 2530–2537 (2009).
[Crossref]
[PubMed]
G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particleposition and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref]
[PubMed]
D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
[Crossref]
M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
[Crossref]
Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett. 36, 3608–3610 (2011).
[Crossref]
[PubMed]
G. Love, J. Major, and A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
[Crossref]
[PubMed]
H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett. 37, 3324–3326 (2012).
[Crossref]
G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), chap. 1, pp. 1–30.
[Crossref]
D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), p. DSu2C.3.