Abstract

We propose and experimentally demonstrate a coherent receiver based on simplified heterodyne detection for 100 G polarization division multiplexing (PDM) signal. Compared to the conventional homodyne detection, only two balanced photo detectors (PDs) and two analog-to-digital converters (ADCs) are used in the simplified heterodyne detection. Compared to the conventional hybrid for homodyne detection, the polarization-diversity hybrid here is also simplified. The in-phase/quadrature (I/Q) separation and corresponding digital signal processing (DSP) following downconversion are realized in digital domain after ADCs. Using this scheme, we successfully demonstrated 8 × 112-Gb/s wavelength-division-multiplexing (WDM) polarization-division-multiplexing 16-ary quadrature amplitude modulation (PDM-16QAM) over 720-km single-mode fiber (SMF)-28 with heterodyne detection based on DSP and erbium-doped fiber amplifier (EDFA)-only amplification. Although the required analog bandwidth and sampling speed of the PDs and ADCs are significantly increased for heterodyne detection, the benefits from the simplified coherent receiver architecture and effective DSP in digital frequency domain are experimentally demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  2. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
    [CrossRef]
  3. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high spectral-efficiency optical transmission,” J. Lightwave Technol.27(16), 3641–3653 (2009).
    [CrossRef]
  4. A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, “10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB8.
  5. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010).
    [CrossRef]
  6. L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev.32(12), 2630–2639 (1985).
    [CrossRef]
  7. R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, “QAM coherent subcarrier multiplexing system based on heterodyne detection using intermediate frequency carrier modulation,” in 2008 Microwave Photonics(2008), pp. 165–168.
  8. M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
    [CrossRef]
  9. International Telecommunications Union, “Forward error correction for high bit-rate DWDM submarine system,” ITU-T Recommendation G.975.1 (ITU, 2004.)

2010 (2)

2009 (1)

2008 (1)

2006 (1)

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

1985 (1)

L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev.32(12), 2630–2639 (1985).
[CrossRef]

Barros, D. J. F.

Buhl, L. L.

Doerr, C. R.

Gnauck, A. H.

Hongou, J.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Ip, E.

Kahn, J. M.

Kasai, K.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Kazovsky, L. G.

L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev.32(12), 2630–2639 (1985).
[CrossRef]

Lau, A. P. T.

Magarini, M.

Nakazawa, M.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
[CrossRef]

Winzer, P. J.

Yoshida, M.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

Yu, J.

Zhou, X.

Electron. Lett. (1)

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett.42(12), 710–712 (2006).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

L. G. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements,” IEEE Trans. Electron. Dev.32(12), 2630–2639 (1985).
[CrossRef]

J. Lightwave Technol. (2)

J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
[CrossRef]

Opt. Express (1)

Other (3)

A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, “10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB8.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, “QAM coherent subcarrier multiplexing system based on heterodyne detection using intermediate frequency carrier modulation,” in 2008 Microwave Photonics(2008), pp. 165–168.

International Telecommunications Union, “Forward error correction for high bit-rate DWDM submarine system,” ITU-T Recommendation G.975.1 (ITU, 2004.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The principle of simplified coherent receiver with heterodyne detection. (b) The principle of downconversion and I/Q separation.

Fig. 2
Fig. 2

Experimental setup. (a): eye diagram of the 14-Gbaud optical 16QAM, (b) and (c): optical spectra before and after heterodyne receiver (0.1 nm-resolution), (d)-(e): electrical spectra of x-polarization in three different cases. PM-OC: polarization-maintaining optical coupler, DAC: digital-to-analog converter, PBC: polarization beam combiner, DL: delay line, ATT: optical attenuator, TOF: tunable optical filter, ADC: analog-to-digital converter.

Fig. 3
Fig. 3

The measured B2B BER versus OSNR for the 14-Gbaud WDM PDM-16QAM channel at 1549.34 nm.

Fig. 4
Fig. 4

(a) The BER/OSNR versus transmission distance, (b) The BER versus input power after 400-km SMF-28 transmission.

Fig. 5
Fig. 5

(a) The optical spectra (0.1-nm resolution) before and after transmission over 720-km SMF-28. (b) The BER of all channels over 720-km SMF-28.

Metrics