Abstract

We theoretically demonstrate highly efficient optical coupling between a single quantum emitter and a monomode optical fiber over remarkably broad spectral ranges by extending the concept of horn antenna to optics. The optical horn antenna directs the radiation from the emitter toward the optical fiber and efficiently phase-matches the photon emission with the fiber mode. Numerical results show that an optical horn antenna can funnel up to 85% of the radiation from a dipolar source within an emission cone semi-angle as small as 7 degrees (antenna directivity of 300). It is also shown that 50% of the emitted power from the dipolar source can be collected and coupled to an SMF-28 fiber mode over spectral ranges larger than 1000 nm, with a maximum energy transfer reaching 70 %. This approach may open new perspectives in quantum optics and sensing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
    [CrossRef]
  2. E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
    [CrossRef]
  3. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
    [CrossRef] [PubMed]
  4. J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
    [CrossRef]
  5. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26, 1473–1478 (2009).
    [CrossRef]
  6. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).
  7. A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  8. KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
    [CrossRef]
  9. X.W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. lett.36, 3545–3547 (2011).
    [CrossRef] [PubMed]
  10. D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
    [CrossRef] [PubMed]
  11. M. Davanço and K. Srinivasan, “Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole,” Opt. lett.34, 2542–2544 (2009).
    [CrossRef] [PubMed]
  12. C.A. Balanis, Antenna Theory : Analysis and Design (John Wiley & Sons, New-York, 1997).
  13. P. Wade, “Rectangular waveguide to coax transition design,” http://f1chf.free.fr/PDF/convertisseursWR90etWR75.pdf .
  14. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. ii. radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am.67, 1615–1619 (1977).
    [CrossRef]
  15. A. Taflove and S.C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).
  16. L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
    [CrossRef]
  17. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  18. CSF Thomson, L’optique Guidée Monomode et ses Applications, 15 (Masson, 1983).
  19. C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J.M. Frigerio, J.P. Hermier, and A. Maître, “Controlled modification of single colloidal cdse/zns nanocrystal fluorescence through interactions with a gold surface,” Opt. express18, 7440–7455 (2010).
    [CrossRef] [PubMed]
  20. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007).
    [CrossRef]
  21. H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007).
    [CrossRef]
  22. T.H. Taminiau, F.D. Stefani, and N.F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
    [CrossRef] [PubMed]

2011

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

X.W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. lett.36, 3545–3547 (2011).
[CrossRef] [PubMed]

2010

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J.M. Frigerio, J.P. Hermier, and A. Maître, “Controlled modification of single colloidal cdse/zns nanocrystal fluorescence through interactions with a gold surface,” Opt. express18, 7440–7455 (2010).
[CrossRef] [PubMed]

2009

2008

2007

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007).
[CrossRef]

H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007).
[CrossRef]

2006

D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
[CrossRef] [PubMed]

2005

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

2002

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

2001

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

1977

Abram, I.

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Aouani, H.

Arakawa, Y.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Balanis, C.A.

C.A. Balanis, Antenna Theory : Analysis and Design (John Wiley & Sons, New-York, 1997).

Bazin, M.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Bleuse, J.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Bonod, N.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).

D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26, 1473–1478 (2009).
[CrossRef]

Chang, D.E.

D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
[CrossRef] [PubMed]

Chen, X.W.

Chen, XW

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

Claudon, J.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Coolen, L.

Curto, A.G.

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Davanço, M.

Devilez, A.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).

D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26, 1473–1478 (2009).
[CrossRef]

Eghlidi, H.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007).
[CrossRef]

Frigerio, J.M.

Gérard, D.

Gérard, J.M.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Gérard, JM

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Götzinger, S.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

X.W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. lett.36, 3545–3547 (2011).
[CrossRef] [PubMed]

Gregersen, N.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Hagness, S.C.

A. Taflove and S.C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

Hecht, B.

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
[CrossRef]

Hemmer, P.R.

D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
[CrossRef] [PubMed]

Hermier, J.P.

Hirose, S.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Hofmann, H.F.

H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007).
[CrossRef]

Jaffrennou, P.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Kadoya, Y.

H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007).
[CrossRef]

Kosako, T.

H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007).
[CrossRef]

Kreuzer, M.P.

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Kukura, P.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

Kunz, R.

Lalanne, P.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Lee, KG

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

Lettow, R.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007).
[CrossRef]

Lukin, M.D.

D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
[CrossRef] [PubMed]

Lukosz, W.

Maître, A.

Malik, N.S.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Manin, L.

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Miyazawa, T.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Moreau, E.

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
[CrossRef]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Pelton, M.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Popov, E.

Quidant, R.

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Renn, A.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

Rigneault, H.

Robert, I.

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Sakuma, Y.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007).
[CrossRef]

Sandoghdar, V.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

X.W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. lett.36, 3545–3547 (2011).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

Schwob, C.

Solomon, G.S.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Sørensen, A.S.

D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
[CrossRef] [PubMed]

Spinicelli, P.

Srinivasan, K.

Stefani, F.D.

Stout, B.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).

D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B26, 1473–1478 (2009).
[CrossRef]

Taflove, A.

A. Taflove and S.C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

Takatsu, M.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Takemoto, K.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Taminiau, T.H.

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

T.H. Taminiau, F.D. Stefani, and N.F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef] [PubMed]

Thierry-Mieg, V.

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

Thomson, CSF

CSF Thomson, L’optique Guidée Monomode et ses Applications, 15 (Masson, 1983).

Usuki, T.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

van Hulst, N.F.

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

T.H. Taminiau, F.D. Stefani, and N.F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef] [PubMed]

Vion, C.

Volpe, G.

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Vuc?kovic, J.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Wenger, J.

Yamamoto, Y.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Yokoyama, N.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett.

E. Moreau, I. Robert, JM Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55-mum optical-fiber band from an inas/inp quantum dot,” Jpn. J. Appl. Phys.44, L620–L622 (2005).
[CrossRef]

Nano Lett.

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” Nano Lett.4, 3390–3396 (2010).

Nat. Photon.

KG Lee, XW Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photon.5, 166–169 (2011).
[CrossRef]

J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon.4, 174–177 (2010).
[CrossRef]

New J. Phys.

H.F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi–uda antenna,” New J. Phys.9, 217 (2007).
[CrossRef]

Opt. Express

Opt. lett.

Phys. Rev. B

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale : A yagi-uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007).
[CrossRef]

Phys. Rev. Lett.

D.E. Chang, A.S. Sørensen, P.R. Hemmer, and M.D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons : a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002).
[CrossRef] [PubMed]

Science

A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, and N.F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Other

C.A. Balanis, Antenna Theory : Analysis and Design (John Wiley & Sons, New-York, 1997).

P. Wade, “Rectangular waveguide to coax transition design,” http://f1chf.free.fr/PDF/convertisseursWR90etWR75.pdf .

A. Taflove and S.C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
[CrossRef]

E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

CSF Thomson, L’optique Guidée Monomode et ses Applications, 15 (Masson, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1
Figure 1

(a) Scheme of the microwave horn antenna (b) Scheme of the fiber-integrated optical horn antenna whose architecture follows the one of the microwave HA : a subwavelength dipole source is placed in between a gold mirror and a flaring dielectric waveguide (n=1.52). The dipolar source is set in contact to the dielectric waveguide of length L = 42 microns. The spacing between the source and the mirror (h) is close to λ/4 for optimum performances of the optical antenna.

Figure 2
Figure 2

(a) Power accumulated by two different geometries of optical HAs (described in the inset) through the output π-plane, as a function of the radial coordinate r. For each HA geometry, the outer boundary of the dielectric horn is represented by a dotted line. (b) Spatial distribution of the real part of the electric field emitted by a dipole source coupled to an optical HA whose geometry is detailed under the figure. The field is displayed within the longitudinal plane (r,z) that contains the dipole and the first 16 microns of the flaring dielectric waveguide. (c,d) emission diagrams P(β, θ) when (c) θ = 90° ((y,z)-plane perpendicular to the dipole direction) and (d) θ = 0° ((x,z)-plane that contains the dipole direction), for the two different HA geometries considered in Fig. 2(a) (detailed in the inset). The dipole is shown in green color.

Figure 3
Figure 3

(a,b) collection efficiency η as a function of λ and the dipole-to-mirror distance h, for the two different HA geometries considered in Fig. 2(a) (detailed in the figure insets).

Figure 4
Figure 4

(a,b) Part of the radiated power from the dipole source ηCm that is collected and guided within the optical fiber by the two HA geometries detailed in the figure insets : coefficient ηCm as a function of λ and h.

Figure 5
Figure 5

(a) Spectra of total decay rate (γtot, dashed lines) and quantum yield (q, solid lines) of the structure for the two HA geometries detailed in the figure inset.(b) spectrum of the overall photon transfer T from the QE to the optical fiber, for R = 500nm, h = 290nm and 4 different values of parameter D ranging from 9000 nm to 12000 nm (see inset).(c) spectrum of the overall photon transfer T from the QE to the optical fiber, for R = 750nm, h = 390nm and 4 different values of parameter D ranging from 9000 nm to 12000 nm (see inset of (b)).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T = q η C m ,
q = γ r γ r + γ n r ,
η = P i P r
C m = P m / P i
P i = 1 2 𝔢 r d r d θ ( E i × H i * ) e z ,
P m = 1 2 𝔢 r d r d θ ( a m E m × b m * H m * ) e z .
a m = r d r d θ ( E i × H m * ) e z r d r d θ ( E m × H m * ) e z ,
b m = r d r d θ ( E m * × H i ) e z r d r d θ ( E m * × H m ) e z .
Dir = max ( 4 π P ( β , θ ) P r ) ,

Metrics