Abstract

In this work the design of Si / hybrid waveguides which contain a vertical infiltrated slot is studied. The case of slots infiltrated with a χ(3) nonlinear material of relatively high refractive index (e.g. chalcogenide glasses) is specifically discussed. An optimized waveguide geometry with periodic refractive index modulation, a nonlinear figure of merit > 1 and minimum effective mode cross section is presented. Introducing a periodic refractive index variation along the waveguide allows the adjustment of the group velocity dispersion (GVD). Choosing the period accordingly, the phase matching condition for degenerate four wave mixing (GVD = 0) can be fulfilled at virtually any desired frequency and independently from the fixed optimized waveguide cross section.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007).
    [Crossref] [PubMed]
  2. T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149 – 1153 (2004).
    [Crossref]
  3. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008).
  4. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [Crossref] [PubMed]
  5. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
    [Crossref] [PubMed]
  6. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
    [Crossref]
  7. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
    [Crossref] [PubMed]
  8. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
    [Crossref] [PubMed]
  9. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
    [Crossref] [PubMed]
  10. S. Mas, J. Caraquitena, J. V. Galn, P. Sanchis, and J. Mart, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express 18, 20839–20844 (2010).
    [Crossref] [PubMed]
  11. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
    [Crossref] [PubMed]
  12. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).
  13. C. Tsay, E. Mujagi, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010).
    [Crossref] [PubMed]
  14. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18, 26744–26753 (2010).
    [Crossref] [PubMed]
  15. G. C. Chern, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979 (1982).
    [Crossref]
  16. Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express 18, 22061 (2010).
    [Crossref] [PubMed]
  17. P. Muellner, “Fundamental characteristics of the soi slot waveguide structure,” Ph.D. thesis, Faculty of Physics, University of Vienna (2010).
  18. “ www.comsol.com ”.
  19. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [Crossref] [PubMed]
  20. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. Osgood, “Nonlinear-optical phase modification in dispersion-engineered si photonic wires,” Opt. Express 16, 1280–1299 (2008).
    [Crossref] [PubMed]
  21. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref] [PubMed]
  22. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett. 37, 2295–2297 (2012).
    [Crossref]
  23. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  24. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690 (2012).
    [Crossref] [PubMed]
  25. L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17, 7095–7101 (2009).
    [Crossref] [PubMed]
  26. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012).
    [Crossref] [PubMed]
  27. R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
    [Crossref]
  28. A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, “Multiphysics software gazes into photonic crystals,” Physics Best pp. 38–39 (2007).
  29. J. D. Joannopoulos and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  30. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
    [Crossref]
  31. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref] [PubMed]
  32. M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

2012 (3)

2011 (2)

R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
[Crossref]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[Crossref] [PubMed]

2010 (6)

2009 (4)

2008 (2)

2007 (4)

2006 (1)

2004 (1)

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149 – 1153 (2004).
[Crossref]

1995 (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

1989 (1)

1982 (1)

G. C. Chern, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979 (1982).
[Crossref]

Afshar V., S.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).

Agrawal, G. P.

Andrejco, M. J.

Arnold, C. B.

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

Bass, M.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Beausoleil, R. G.

Bergman, K.

Caraquitena, J.

Chen, X.

Chern, G. C.

G. C. Chern, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979 (1982).
[Crossref]

Chou, C.-Y.

Dadap, J. I.

de Sterke, C. M.

DeCusatis, C.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

DeLong, K. W.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
[Crossref]

Driscoll, J. B.

Dulkeith, E.

Eggleton, B. J.

Enoch, J.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Foster, M. A.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
[Crossref]

Freude, W.

Gaeta, A. L.

Galn, J. V.

Gao, S.

Gmachl, C. F.

Gomez-Iglesias, A.

Green, W. M. J.

Greulich-Weber, S.

A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, “Multiphysics software gazes into photonic crystals,” Physics Best pp. 38–39 (2007).

Grote, R. R.

Hainberger, R.

He, S.

Hsieh, I.-W.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

Jacome, L.

Joannopoulos, J. D.

J. D. Joannopoulos and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
[Crossref]

Koos, C.

Krauss, T. F.

Lamont, M. R.

Leuthold, J.

Li, G.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Li, J.

Li, Z.

Liang, T.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149 – 1153 (2004).
[Crossref]

Lin, Q.

Lipson, M.

Liu, Q.

Liu, X.

Lonar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
[Crossref]

MacDonald, C.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Madsen, C. K.

Mahajan, V. N.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Manolatou, C.

Mart, J.

Mas, S.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
[Crossref]

McNab, S. J.

Mizrahi, V.

Monro, T. M.

Muellner, P.

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
[Crossref] [PubMed]

P. Muellner, “Fundamental characteristics of the soi slot waveguide structure,” Ph.D. thesis, Faculty of Physics, University of Vienna (2010).

Mujagi, E.

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

O’Faolain, L.

Ophir, N.

Osgood, R.

Osgood, R. M.

Painter, O. J.

Panoiu, N. C.

Petkov, K.

R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
[Crossref]

Pirov, J.

R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
[Crossref]

Poulton, C.

Premaratne, M.

Rukhlenko, I. D.

Saifi, M. A.

Sanchis, P.

Schmidt, B. S.

Sekaric, L.

Sharping, J. E.

Stegeman, G. I.

Stryland, E. V.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

Todorov, R.

R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
[Crossref]

Tsang, H.

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149 – 1153 (2004).
[Crossref]

Tsankov, D.

R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
[Crossref]

Tsay, C.

Turner, A. C.

Vlasov, Y. A.

von Rhein, A.

A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, “Multiphysics software gazes into photonic crystals,” Physics Best pp. 38–39 (2007).

Wang, J.

Wehrspohn, R. B.

A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, “Multiphysics software gazes into photonic crystals,” Physics Best pp. 38–39 (2007).

Wellenzohn, M.

White, T. P.

Willner, A. E.

Winn, J. N.

J. D. Joannopoulos and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Xia, F.

Xiao-Li, Y.

Xie, Y.

Yan, Y.

Yue, Y.

Zha, Y.

Zhang, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lonar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106–121106–3 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Liang and H. Tsang, “Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10, 1149 – 1153 (2004).
[Crossref]

J. Appl. Phys. (2)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77, 5518–5523 (1995).
[Crossref]

G. C. Chern, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53, 6979 (1982).
[Crossref]

J. Phys. D: Appl. Phys. (1)

R. Todorov, D. Tsankov, J. Pirov, and K. Petkov, “Structure and optical properties of thin As2S3 In2S3 films,” J. Phys. D: Appl. Phys. 44, 305401 (2011).
[Crossref]

Opt. Express (17)

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[Crossref] [PubMed]

J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. Osgood, “Nonlinear-optical phase modification in dispersion-engineered si photonic wires,” Opt. Express 16, 1280–1299 (2008).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690 (2012).
[Crossref] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17, 7095–7101 (2009).
[Crossref] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20, 9227–9242 (2012).
[Crossref] [PubMed]

Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express 18, 22061 (2010).
[Crossref] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
[Crossref] [PubMed]

C. Tsay, E. Mujagi, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18, 15523–15530 (2010).
[Crossref] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18, 26744–26753 (2010).
[Crossref] [PubMed]

M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007).
[Crossref] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
[Crossref] [PubMed]

S. Mas, J. Caraquitena, J. V. Galn, P. Sanchis, and J. Mart, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express 18, 20839–20844 (2010).
[Crossref] [PubMed]

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Physics Best (1)

A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, “Multiphysics software gazes into photonic crystals,” Physics Best pp. 38–39 (2007).

Other (6)

J. D. Joannopoulos and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, E. V. Stryland, and C. MacDonald, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Prof Med/Tech, 2009).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008).

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2006).

P. Muellner, “Fundamental characteristics of the soi slot waveguide structure,” Ph.D. thesis, Faculty of Physics, University of Vienna (2010).

“ www.comsol.com ”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Schematic drawing of the waveguides investigated in this paper. The SOI slot waveguide is infiltrated and surrounded by a layer of the chalcogenide glass As2S3 with a refractive index of 2.34. b) Cross section of the TE-like mode profile of the infiltrated slotted Si waveguide. The inset shows the field intensity along the depicted line

Fig. 2
Fig. 2

a) Figure of merit of such a waveguide. The circle indicates the maximum point of the 1/Aeff plot. At this point the value of the FOM is1.3. b) 1/Aeff as defined in Ref. [5] for constant slot width wslot = 100 nm and varying height hwg and width wwg of a chalcogenide coated slot waveguide. The optimum parameters were found to be hwg = 210 nm and wwg = 420 nm.

Fig. 3
Fig. 3

a) Schematic drawing of the investigated waveguide structure with index modulation along the waveguide. In the simulations wslot is set to 100 nm. wwg and hwg are set to the optimized parameters hwg = 210 nm and wwg = 420 nm. The refractive indices of the cladding are varied with periodicity a between n1 and n2 = n1 + 0.05. n1 corresponds to the refractive index of unexposed As2S3 (compare Table 1) and n2 to the index of the exposed As2S3. b) Dispersion of a periodic slot waveguide with lattice constant a = 380 nm.

Fig. 4
Fig. 4

a) GVD parameters for optimized transverse waveguide profile and a lattice constant a varying between a = 300 nm and a = 400 nm. The inset shows the linear dependence of the GVD = 0 wavelength and the period of the index modulation. b) Bandwidth (|ΔβL| < π/2) of the wavelength conversion for different waveguide lengths L. c) GVD parameters for fixed lattice constant a = 340 nm and thickness of the cladding layer Δhwg

Tables (1)

Tables Icon

Table 1 Material parameters used in this work

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

γ = ε 0 μ 0 n 2 ( x , y ) ( ω / c n 2 ( x , y ) + i / 2 β ( x , y ) ) | e | 4 d A | ( e × h * ) z d A | 2 .
A eff = 1 n A s 2 S 3 2 μ 0 ε 0 | ( e × h * ) z d A | 2 D A s 2 S 3 | e | 4 d A .
ω i = 2 ω p ω s
k i = 2 k p k s
ω i = ω p Δ ω
ω s = ω p + Δ ω ,
k i = k p d k d ω | ω p Δ ω + 1 2 d 2 k d ω 2 | ω p Δ ω 2
k s = k p + d k d ω | ω p Δ ω + 1 2 d 2 k d ω 2 | ω p Δ ω 2
d 2 k d ω 2 = 0 .
2 π c λ 2 d 2 k d ω 2 = 2 π c λ 2 ( d ω d k ) 3 d 2 ω d k 2 .
n 0 2 ( λ ) = 1 + i B i λ 2 λ 2 C i

Metrics