Abstract

Planar velocity fields in flows are determined simultaneously on parallel measurement planes by means of an in-house manufactured light-field camera. The planes are defined by illuminating light sheets with constant spacing. Particle positions are reconstructed from a single 2D recording taken by a CMOS-camera equipped with a high-quality doublet lens array. The fast refocusing algorithm is based on synthetic-aperture particle image velocimetry (SAPIV). The reconstruction quality is tested via ray-tracing of synthetically generated particle fields. The introduced single-camera SAPIV is applied to a convective flow within a measurement volume of 30 x 30 x 50 mm3.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids10(4), 181–193 (1991).
    [CrossRef]
  2. K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol.6(6), 742–753 (1995).
    [CrossRef]
  3. C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids29(7), S070–S077 (2000).
    [CrossRef]
  4. C. Brücker, “3-D PIV via spatial correlation in a color-coded light-sheet,” Exp. Fluids21, 312–314 (1996).
    [CrossRef]
  5. J. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows,” Exp. Fluids38(2), 185–196 (2005).
    [CrossRef]
  6. C. Brücker, “Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder,” Exp. Fluids19, 255–263 (1995).
    [CrossRef]
  7. V. Palero, J. Lobera, and M. P. Arroyo, “Digital image plane holography (DIPH) for two-phase flow diagnostics in multiple planes,” Exp. Fluids39(2), 397–406 (2005).
    [CrossRef]
  8. A. Liberzon, R. Gurka, and G. Hetsroni, “XPIV-Multi-plane stereoscopic particle image velocimetry,” Exp. Fluids36(2), 355–362 (2004).
    [CrossRef]
  9. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
    [CrossRef]
  10. F. Pereira and M. Gharib, “Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows,” Meas. Sci. Technol.13(5), 683–694 (2002).
    [CrossRef]
  11. C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
    [CrossRef]
  12. J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
    [CrossRef]
  13. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
    [CrossRef]
  14. M. Levoy, “Light fields and computational imaging,” Computer39(8), 46–55 (2006).
    [CrossRef]
  15. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 99–106 (1992).
    [CrossRef]
  16. T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” presented at 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (9–12 July 2012).
  17. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–8.
  18. R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2004).
  19. M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol.2(12), 1181–1186 (1991).
    [CrossRef]
  20. M. P. Arroyo and K. Hinsch, “Recent developments of PIV towards 3D measurements,” in Particle Image Velocimetry, Vol. 112 of Topics in Applied Physics (Springer, Berlin, 2008), pp. 127–154.
  21. Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
    [CrossRef]
  22. C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
    [CrossRef] [PubMed]
  23. M. Lappa, “Review: thermal convection and related instabilities in models of crystal growth from the melt on earth and in microgravity: Past history and current status,” Cryst. Res. Technol.40(6), 531–549 (2005).
    [CrossRef]

2012

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
[CrossRef] [PubMed]

2010

C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
[CrossRef]

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
[CrossRef]

2006

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
[CrossRef]

M. Levoy, “Light fields and computational imaging,” Computer39(8), 46–55 (2006).
[CrossRef]

2005

M. Lappa, “Review: thermal convection and related instabilities in models of crystal growth from the melt on earth and in microgravity: Past history and current status,” Cryst. Res. Technol.40(6), 531–549 (2005).
[CrossRef]

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

J. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows,” Exp. Fluids38(2), 185–196 (2005).
[CrossRef]

V. Palero, J. Lobera, and M. P. Arroyo, “Digital image plane holography (DIPH) for two-phase flow diagnostics in multiple planes,” Exp. Fluids39(2), 397–406 (2005).
[CrossRef]

2004

A. Liberzon, R. Gurka, and G. Hetsroni, “XPIV-Multi-plane stereoscopic particle image velocimetry,” Exp. Fluids36(2), 355–362 (2004).
[CrossRef]

2002

F. Pereira and M. Gharib, “Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows,” Meas. Sci. Technol.13(5), 683–694 (2002).
[CrossRef]

2000

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids29(7), S070–S077 (2000).
[CrossRef]

1996

C. Brücker, “3-D PIV via spatial correlation in a color-coded light-sheet,” Exp. Fluids21, 312–314 (1996).
[CrossRef]

1995

K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol.6(6), 742–753 (1995).
[CrossRef]

C. Brücker, “Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder,” Exp. Fluids19, 255–263 (1995).
[CrossRef]

1992

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 99–106 (1992).
[CrossRef]

1991

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol.2(12), 1181–1186 (1991).
[CrossRef]

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids10(4), 181–193 (1991).
[CrossRef]

Adams, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 99–106 (1992).
[CrossRef]

Antunez, E.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Arroyo, M. P.

V. Palero, J. Lobera, and M. P. Arroyo, “Digital image plane holography (DIPH) for two-phase flow diagnostics in multiple planes,” Exp. Fluids39(2), 397–406 (2005).
[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol.2(12), 1181–1186 (1991).
[CrossRef]

Axiak, M. C.

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
[CrossRef]

Barth, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Belden, J.

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
[CrossRef]

Brücker, C.

C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
[CrossRef] [PubMed]

C. Brücker, “3-D PIV via spatial correlation in a color-coded light-sheet,” Exp. Fluids21, 312–314 (1996).
[CrossRef]

C. Brücker, “Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder,” Exp. Fluids19, 255–263 (1995).
[CrossRef]

Chaves, H.

C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
[CrossRef] [PubMed]

Cierpka, C.

C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
[CrossRef]

Dabiri, D.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Dahm, W. J. A.

J. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows,” Exp. Fluids38(2), 185–196 (2005).
[CrossRef]

Duncan, J.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
[CrossRef]

Gharib, M.

F. Pereira and M. Gharib, “Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows,” Meas. Sci. Technol.13(5), 683–694 (2002).
[CrossRef]

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids10(4), 181–193 (1991).
[CrossRef]

Greated, C. A.

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol.2(12), 1181–1186 (1991).
[CrossRef]

Gurka, R.

A. Liberzon, R. Gurka, and G. Hetsroni, “XPIV-Multi-plane stereoscopic particle image velocimetry,” Exp. Fluids36(2), 355–362 (2004).
[CrossRef]

Hain, R.

C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
[CrossRef]

Hetsroni, G.

A. Liberzon, R. Gurka, and G. Hetsroni, “XPIV-Multi-plane stereoscopic particle image velocimetry,” Exp. Fluids36(2), 355–362 (2004).
[CrossRef]

Hinsch, K. D.

K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol.6(6), 742–753 (1995).
[CrossRef]

Horowitz, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Hove, J.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Joshi, N.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Kähler, C. J.

C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
[CrossRef]

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids29(7), S070–S077 (2000).
[CrossRef]

Klotz, T.

C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
[CrossRef] [PubMed]

Kompenhans, J.

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids29(7), S070–S077 (2000).
[CrossRef]

Lappa, M.

M. Lappa, “Review: thermal convection and related instabilities in models of crystal growth from the melt on earth and in microgravity: Past history and current status,” Cryst. Res. Technol.40(6), 531–549 (2005).
[CrossRef]

Lei, Y. C.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Levoy, M.

M. Levoy, “Light fields and computational imaging,” Computer39(8), 46–55 (2006).
[CrossRef]

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Liberzon, A.

A. Liberzon, R. Gurka, and G. Hetsroni, “XPIV-Multi-plane stereoscopic particle image velocimetry,” Exp. Fluids36(2), 355–362 (2004).
[CrossRef]

Lobera, J.

V. Palero, J. Lobera, and M. P. Arroyo, “Digital image plane holography (DIPH) for two-phase flow diagnostics in multiple planes,” Exp. Fluids39(2), 397–406 (2005).
[CrossRef]

Mouton, C.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Mullin, J. A.

J. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows,” Exp. Fluids38(2), 185–196 (2005).
[CrossRef]

Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
[CrossRef]

Palero, V.

V. Palero, J. Lobera, and M. P. Arroyo, “Digital image plane holography (DIPH) for two-phase flow diagnostics in multiple planes,” Exp. Fluids39(2), 397–406 (2005).
[CrossRef]

Paul, M.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Pereira, F.

F. Pereira and M. Gharib, “Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows,” Meas. Sci. Technol.13(5), 683–694 (2002).
[CrossRef]

Ponchaut, N.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Rösgen, T.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Scarano, F.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
[CrossRef]

Segura, R.

C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
[CrossRef]

Skupsch, C.

C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
[CrossRef] [PubMed]

Talvala, E.-V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Techet, A. H.

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
[CrossRef]

Tien, W. H.

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

Truscott, T. T.

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
[CrossRef]

Vaish, V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 99–106 (1992).
[CrossRef]

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
[CrossRef]

Wilburn, B.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Willert, C. E.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids10(4), 181–193 (1991).
[CrossRef]

ACM Trans. Graph.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph.24(3), 765–766 (2005).
[CrossRef]

Computer

M. Levoy, “Light fields and computational imaging,” Computer39(8), 46–55 (2006).
[CrossRef]

Cryst. Res. Technol.

M. Lappa, “Review: thermal convection and related instabilities in models of crystal growth from the melt on earth and in microgravity: Past history and current status,” Cryst. Res. Technol.40(6), 531–549 (2005).
[CrossRef]

Exp. Fluids

Y. C. Lei, W. H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, and J. Hove, “A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method,” Exp. Fluids53(5), 1251–1268 (2012).
[CrossRef]

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids10(4), 181–193 (1991).
[CrossRef]

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids29(7), S070–S077 (2000).
[CrossRef]

C. Brücker, “3-D PIV via spatial correlation in a color-coded light-sheet,” Exp. Fluids21, 312–314 (1996).
[CrossRef]

J. A. Mullin and W. J. A. Dahm, “Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows,” Exp. Fluids38(2), 185–196 (2005).
[CrossRef]

C. Brücker, “Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder,” Exp. Fluids19, 255–263 (1995).
[CrossRef]

V. Palero, J. Lobera, and M. P. Arroyo, “Digital image plane holography (DIPH) for two-phase flow diagnostics in multiple planes,” Exp. Fluids39(2), 397–406 (2005).
[CrossRef]

A. Liberzon, R. Gurka, and G. Hetsroni, “XPIV-Multi-plane stereoscopic particle image velocimetry,” Exp. Fluids36(2), 355–362 (2004).
[CrossRef]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids41(6), 933–947 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 99–106 (1992).
[CrossRef]

Meas. Sci. Technol.

K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol.6(6), 742–753 (1995).
[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol.2(12), 1181–1186 (1991).
[CrossRef]

F. Pereira and M. Gharib, “Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows,” Meas. Sci. Technol.13(5), 683–694 (2002).
[CrossRef]

C. Cierpka, R. Segura, R. Hain, and C. J. Kähler, “A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics,” Meas. Sci. Technol.21(4), 045401 (2010).
[CrossRef]

J. Belden, T. T. Truscott, M. C. Axiak, and A. H. Techet, “Three-dimensional synthetic aperture particle image velocimetry,” Meas. Sci. Technol.21(12), 125403 (2010).
[CrossRef]

Rev. Sci. Instrum.

C. Skupsch, T. Klotz, H. Chaves, and C. Brücker, “Channelling optics for high quality imaging of sensory hair,” Rev. Sci. Instrum.83(4), 045001 (2012).
[CrossRef] [PubMed]

Other

M. P. Arroyo and K. Hinsch, “Recent developments of PIV towards 3D measurements,” in Particle Image Velocimetry, Vol. 112 of Topics in Applied Physics (Springer, Berlin, 2008), pp. 127–154.

T. Nonn, J. Kitzhofer, D. Hess, and C. Brücker, “Measurements in an IC-engine flow using light-field volumetric velocimetry,” presented at 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (9–12 July 2012).

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2009), pp. 1–8.

R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Setup of the SAPIV receiving optics. Randomly distributed light rays propagate between particle and camera chip. 100 layout rays are displayed. (Simulated by ZEMAX.)

Fig. 2
Fig. 2

Basic principle of synthetic-aperture imaging. Two differently colored particles are imaged through optics containing a lens array. Each lens depicts both particles resulting in the given image.

Fig. 3
Fig. 3

Lens array and shift-maps containing shift-vectors h for matching particle images from different depths Z1 and Z2. The image plane is decomposed into sub-images for all lenses. One shift-vector is used for one sub-image.

Fig. 4
Fig. 4

Schematic of the four-step algorithm for refocusing images obtained by SAPIV.

Fig. 5
Fig. 5

Imaging of particles P1 and P2 at different Z-position through lens b) along one line through the lens array. The object height equals lens pitch p. Image heights are denoted by h1 and h2.

Fig. 6
Fig. 6

Image magnification β as a function of depth Z, measured within a flow basin of D = 100mm edge length. The fit-function reads β = 0.054(Z/D)2-0.13Z/D + 0.16.

Fig. 7
Fig. 7

Measured shift magnitudes |h| for selected sub-images as a function of Z/D within a flow basin with an edge length of D = 100mm. Four different markers corresponding to four different lens pitches |p| (1-4) are displayed.

Fig. 8
Fig. 8

Simulated intensity fields generated by the SAPIV optics at particle image densities of 0.002, 0.008, 0.015. Particles are randomly distributed on five equidistant measurement planes, imaged by the optics shown in Fig. 1.

Fig. 9
Fig. 9

Comparison of raw (left) and refocused (right) particle images at 0.008 particle image density. Depth Z is color-coded.

Fig. 10
Fig. 10

Reconstruction quality Q as a function of the refocusing-threshold in gray-scale values and the particle image density N.

Fig. 11
Fig. 11

Maximum feasible reconstruction quality Q (left) and corresponding threshold in gray-scale values as a function of the particle image density N. The linear trends (solid lines) are: Qmax = 0.94-6.5N and threshold = 65.8 + 2400N.

Fig. 12
Fig. 12

Root mean square deviation σr between exact and refocused positions of particles present in the measurement volume. The linear trend (solid line) is: σr = 0.14 + 28.8N.

Fig. 13
Fig. 13

Experimental setup for single-camera SAPIV. The illuminating laser beam is expanded to five light sheets by an optical grating. The receiving optics is aligned normal to the light sheets. Tracer particles from all light sheets are imaged onto the sensor plane at the same time.

Fig. 14
Fig. 14

1024x1024px snapshot of tracer particles in the flow basin. The image is formed by twenty-one single lenses. Tracer particles are distributed in depth on five simultaneously illuminated light sheets equally spaced by 12.5mm. The diameter of the field of view is 30mm.

Fig. 15
Fig. 15

Process chain of refocusing tracer particles. The refocused plane is at Z/D = 0.46. Left: Unprocessed 204x204px central sub-image. Middle: Normalized sum of 21 shifted sub-images. Right: Refocused imaged, generated by applying a threshold.

Fig. 16
Fig. 16

Orientation of the measurement plane at Z/D = 0.58 within the flow basin. The dotted border indicates the heated plate, the dash-dotted border indicates the cooled one.

Fig. 17
Fig. 17

Left: section of time-averaged, 3D velocity field in a laterally heated convective flow, determined by single-camera SAPIV. Five equally spaced light sheets between 0.08 Z/D0.58 are used for illumination. The hot wall is located at Y/D = 0, the cold wall at Y/D = 1. Two-component velocity vectors are depicted as black vector-cones. The mean absolute velocity is color-coded on XY-slices bordering the measurement volume. Right: maximum average velocity on each measurement plane.

Fig. 18
Fig. 18

Mean velocity fields on five measurement planes from Z/D = 0.08 to Z/D = 0.58 (from left to right), spaced by Z/D = 0.125. Vectors are determined by 2D-PIV and indicate the direction of the flow in the XY-plane. The illustration shows each second vector. Velocity magnitudes are denoted in Fig. 17, right.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δh=p( -b Z i +δZ - -b Z i ),
δZ=± Z i β i 1+ β i /γ
β 2 +[ 2-(Z+b)/f ]β+1=0
Q= X,Y, Z i I r ( X,Y, Z i ) I 0 (X,Y, Z i ) X,Y, Z i I r 2 (X,Y, Z i ) X,Y, Z i I 0 2 (X,Y, Z i )

Metrics