Abstract

We propose and numerically demonstrate a high absorption hybrid-plasmonic-based metal semiconductor metal photodetector (MSM-PD) comprising metal nanogratings, a subwavelength slit and amorphous silicon or germanium embedded metal nanoparticles (NPs). Simulation results show that by optimizing the metal nanograting parameters, the subwavelength slit and the embedded metal NPs, a 1.3 order of magnitude increase in electric field is attained, leading to 28-fold absorption enhancement, in comparison with conventional MSM-PD structures. This is 3.5 times better than the absorption of surface plasmon polariton (SPP) based MSM-PD structures employing metal nanogratings and a subwavelength slit. This absorption enhancement is due to the ability of the embedded metal NPs to enhance their optical absorption and scattering properties through light-stimulated resonance aided by the conduction electrons of the NPs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron.27(3), 737–752 (1991).
    [CrossRef]
  2. M. Y. Liu and S. Y. Chou, “Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2676 (1995).
    [CrossRef]
  3. S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001).
    [CrossRef]
  4. S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991).
    [CrossRef]
  5. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
    [CrossRef] [PubMed]
  8. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
    [CrossRef] [PubMed]
  9. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
    [CrossRef]
  10. C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
    [CrossRef]
  11. R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express16(7), 4588–4596 (2008).
    [CrossRef] [PubMed]
  12. R. R. Grote, R. M. Osgood, Jr., J. E. Spanier, and B. Nabet, “Optimization of a surface plasmon enhanced metal-semiconductor-metal photodetector on gallium arsenide,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FThY3.
  13. A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
    [CrossRef]
  14. F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
    [CrossRef] [PubMed]
  15. C. L. Tan, V. V. Lysak, A. Karar, N. Das, K. Alameh, and Y. T. Lee, “Absorption enhancement of MSM photodetector structure with a plasmonic double grating structure,” in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO) (IEEE, 2010), pp. 849–853.
  16. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  17. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
    [CrossRef]
  18. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  20. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, USA, 1985).
  22. RSoft Desgin Group, DiffractMod (version.3.2), http://www.rsoftdesign.com
  23. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, eds., Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, 2009).
  24. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009).
    [CrossRef] [PubMed]
  25. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
    [CrossRef]
  26. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  27. C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
    [CrossRef]
  28. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
    [CrossRef]
  29. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
    [CrossRef]

2011 (2)

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

2010 (3)

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

2009 (4)

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009).
[CrossRef] [PubMed]

C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

2006 (1)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

2004 (1)

2003 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

2001 (1)

S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

1995 (1)

M. Y. Liu and S. Y. Chou, “Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2676 (1995).
[CrossRef]

1991 (2)

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron.27(3), 737–752 (1991).
[CrossRef]

S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991).
[CrossRef]

Alameh, K.

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
[CrossRef]

Ang, K. W.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Assanto, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Averine, S.

S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Barnard, E. S.

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Bhat, R. D. R.

Bozhevolnyi, S. I.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
[CrossRef]

Brueck, S. R. J.

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Chan, Y. C.

S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001).
[CrossRef]

Chandran, A.

Chang, J. Y.

C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
[CrossRef]

Chang, Y. C.

C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
[CrossRef]

Chao, C. C.

C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
[CrossRef]

Chou, S. Y.

M. Y. Liu and S. Y. Chou, “Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2676 (1995).
[CrossRef]

S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991).
[CrossRef]

Colace, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Currie, M.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

Das, N.

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Di Gaspare, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Fan, S.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Fischer, P. B.

S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991).
[CrossRef]

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Grote, R.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

Karar, A.

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

Karouta, F.

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Kwong, D. L.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Lam, Y. L.

S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001).
[CrossRef]

Lee, Y. T.

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Liu, M. Y.

M. Y. Liu and S. Y. Chou, “Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2676 (1995).
[CrossRef]

Liu, Y.

S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991).
[CrossRef]

Lo, G. Q.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Lysak, V. V.

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
[CrossRef]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Masini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Nabet, B.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Osgood, R. M.

Palange, E.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Panoiu, N. C.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Ren, F. F.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Schumacher, H.

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron.27(3), 737–752 (1991).
[CrossRef]

Shackleford, J. A.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Soole, J. B. D.

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron.27(3), 737–752 (1991).
[CrossRef]

Spanier, J. E.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

Tan, C. L.

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Veronis, G.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
[CrossRef]

Wang, C. M.

C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
[CrossRef]

White, J. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Ye, J.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

Yu, M.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Yu, Z.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
[CrossRef]

Appl. Phys. Lett. (6)

M. Y. Liu and S. Y. Chou, “Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2676 (1995).
[CrossRef]

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett.94(8), 083501 (2009).
[CrossRef]

A. Karar, N. Das, C. L. Tan, K. Alameh, Y. T. Lee, and F. Karouta, “High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.99(13), 133112 (2011).
[CrossRef]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron.27(3), 737–752 (1991).
[CrossRef]

J. Appl. Phys. (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

J. Vac. Sci. Technol. (1)

S. Y. Chou, Y. Liu, and P. B. Fischer, “Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy,” J. Vac. Sci. Technol.9(6), 2920–2924 (1991).
[CrossRef]

Nano Lett. (2)

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission throught sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

C. L. Tan, V. V. Lysak, K. Alameh, and Y. T. Lee, “Absorption enhancement of 980 nm MSM photodetector with a plasmonic grating structure,” Opt. Commun.283(9), 1763–1767 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Rev. (1)

C. C. Chao, C. M. Wang, Y. C. Chang, and J. Y. Chang, “Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell,” Opt. Rev.16(3), 343–346 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Solid-State Electron. (1)

S. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures,” Solid-State Electron.45(3), 441–446 (2001).
[CrossRef]

Other (8)

R. R. Grote, R. M. Osgood, Jr., J. E. Spanier, and B. Nabet, “Optimization of a surface plasmon enhanced metal-semiconductor-metal photodetector on gallium arsenide,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FThY3.

C. L. Tan, V. V. Lysak, A. Karar, N. Das, K. Alameh, and Y. T. Lee, “Absorption enhancement of MSM photodetector structure with a plasmonic double grating structure,” in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO) (IEEE, 2010), pp. 849–853.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, USA, 1985).

RSoft Desgin Group, DiffractMod (version.3.2), http://www.rsoftdesign.com

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, eds., Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, 2009).

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic diagram of a conventional plasmonic MSM-PD structure employing a single metal nanograting. (b) Plasmonic MSM-PD structure with double metal nanogratings. (c) Proposed hybrid plasmonic MSM-PD structure employing a single metal nanograting in conjunction with embedded metal NPs.

Fig. 2
Fig. 2

Absorption enhancement spectrum for different subwavelength slit thicknesses (L).

Fig. 3
Fig. 3

Absorption enhancement spectrum for different subwavelength slit widths (SW).

Fig. 4
Fig. 4

Absorption enhancement spectrum for different values of width of first metal nanograting ( x m ).

Fig. 5
Fig. 5

(a) Absorption enhancement spectrum for different metal nanograting heights ( h g ), and (b) Absorption enhancement spectrum for different metal nanograting duty cycles ( x mp ). Optimum nanograting height and duty cycle are 600 nm and 60%, respectively.

Fig. 6
Fig. 6

(a) Transmittance for Ag NPs embedded in air, silicon dioxide (SiO2), germanium (Ge) and amorphous silicon (a-Si). (b) Transmittance for Au NPs embedded in air, silicon dioxide (SiO2), germanium (Ge) and amorphous silicon (a-Si).

Fig. 7
Fig. 7

Absorption enhancement spectrum for (a) Different distance between NPs ( NPs_Sp ) of metal Au NPs, and (b) Different distance between NPs ( NPs_Sp ) of metal Ag NPs.

Fig. 8
Fig. 8

Absorption enhancement spectrum for (a) Different Au NP diameters ( NPs_D ), and (b) Different Ag NP diameters ( NPs_D ).

Fig. 9
Fig. 9

Absorption enhancement factor of the optimized hybrid plasmonic MSM-PD with embedded Au NPs, and the hybrid plasmonic MSM-PD with embedded Ag NPs and the conventional plasmonic MSM-PD normalized to the absorption of the conventional MSM-PD (without metal grating or metal NPs). All simulated MSM-PD structures (shown in Fig. 1) have similar dimensions.

Fig. 10
Fig. 10

FDTD simulated electric field distribution across (a) Full SPP MSM-PD structure (with optimized subwavelength slit and metal nanograting parameters). (b) Full hybrid plasmonic MSM-PD structure, where red highlighted LSPR due to metal NPs where further enhance the absorption enhancement of the MSM-PD (with optimized subwavelength slit, metal nanograting and metal NPs parameters).

Fig. 11
Fig. 11

(a) Magnetic field along the y-direction at the interface between subwavelength slit and the NP host material. (b) Magnetic field along the y-direction at the interface between the metal NPs and GaAs substrate. (c) Electric field along the z-direction at the interface between subwavelength slit and the NP host material, and (d) Electric field along the z-direction at the interface between the metal NPs and GaAs substrate for the hybrid plasmonic MSM-PD (with optimized subwavelength slit, metal nanograting and metal NPs parameters).

Tables (1)

Tables Icon

Table 1 Default Simulation Parameters Used in the FDTD Simulations for the Optimization of the Hybrid Plasmonic MSM-PD Structure

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k sp = ω c sinθ±j 2π Λ = ω c ε m ' ε d ε m ' + ε d
C abs = 2π λ Im(α), C sca = 1 6π ( 2π λ ) 4 | α | 2 ,
α=3V ε p ε sm ε p + ε sm .

Metrics