Abstract

A grating-tuned extended-cavity quantum cascade laser (EC-QCL) operating around 7.6 µm was assembled to provide a tuning range of ~80 cm−1 with output power of up to 30 mW. The EC-QCL output power was shown to be sensitive to the presence of a broadband absorbing gas mixture contained in a 2-cm cell introduced inside the extended laser cavity. In this arrangement, enhanced absorption relative to single path linear absorption was observed. To describe observations, in the QCL rate-equation model was included the effect of intracavity absorption. The model qualitatively reproduced the absorption behavior observed. In addition, it allowed quantitative measurements of mixing ratio of dimethyl carbonate, which was used as a test broadband absorber. A number of alternative data acquisition and reduction methods were identified. As the intracavity absorber modifies the laser threshold current, phase-sensitive detection of the laser threshold current was found to be the most attractive way to determine the mixing ratio of the absorber. The dimethyl carbonate detection limit was estimated to be 1.4 ppmv for 10 second integration. Limitations and possible ways of improvements were also identified.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
    [CrossRef]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
    [CrossRef]
  3. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
    [CrossRef]
  4. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
    [CrossRef]
  5. T. Tsai and G. Wysocki, “External-cavity quantum cascade lasers with fast wavelength scanning,” Appl. Phys. B100(2), 243–251 (2010).
    [CrossRef]
  6. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev.16(4), 347–366 (2008).
    [CrossRef]
  7. M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
    [CrossRef]
  8. S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
    [CrossRef]
  9. D. J. Hamilton and A. J. Orr-Ewing, “A quantum cascade laser based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air,” Appl. Phys. B102(4), 879–890 (2011).
    [CrossRef]
  10. M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012).
    [CrossRef] [PubMed]
  11. G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
    [CrossRef]
  12. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999).
    [CrossRef]
  13. P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
    [CrossRef]
  14. H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron.16(4), 455–461 (1980).
    [CrossRef]
  15. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
    [CrossRef]
  16. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58(12), 1452–1461 (2004).
    [CrossRef] [PubMed]
  17. H. Bohets and B. J. van der Veken, “On the conformational behavior of dimethyl carbonate,” Phys. Chem. Chem. Phys.1(8), 1817–1826 (1999).
    [CrossRef]
  18. T. Gensty and W. Elsäßer, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun.256(1-3), 171–183 (2005).
    [CrossRef]
  19. Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
    [CrossRef]

2012 (1)

2011 (2)

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

D. J. Hamilton and A. J. Orr-Ewing, “A quantum cascade laser based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air,” Appl. Phys. B102(4), 879–890 (2011).
[CrossRef]

2010 (5)

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

T. Tsai and G. Wysocki, “External-cavity quantum cascade lasers with fast wavelength scanning,” Appl. Phys. B100(2), 243–251 (2010).
[CrossRef]

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

2008 (2)

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev.16(4), 347–366 (2008).
[CrossRef]

2005 (2)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

T. Gensty and W. Elsäßer, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun.256(1-3), 171–183 (2005).
[CrossRef]

2004 (2)

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58(12), 1452–1461 (2004).
[CrossRef] [PubMed]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

2002 (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

1999 (2)

H. Bohets and B. J. van der Veken, “On the conformational behavior of dimethyl carbonate,” Phys. Chem. Chem. Phys.1(8), 1817–1826 (1999).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999).
[CrossRef]

1996 (1)

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

1980 (1)

H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron.16(4), 455–461 (1980).
[CrossRef]

Baev, V. M.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999).
[CrossRef]

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

Beck, M.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Bernacki, B. E.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Bohets, H.

H. Bohets and B. J. van der Veken, “On the conformational behavior of dimethyl carbonate,” Phys. Chem. Chem. Phys.1(8), 1817–1826 (1999).
[CrossRef]

Böhm, R.

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

Bradshaw, J. L.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Bronner, W.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

Brusentsova, T.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

Burkhard, H.

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

Burrows, J. P.

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

Cannon, B. D.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Chu, P. M.

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

Davies, P. B.

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Edwards, O.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Elsäßer, W.

T. Gensty and W. Elsäßer, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun.256(1-3), 171–183 (2005).
[CrossRef]

Engeln, R.

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Faist, J.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Fredricksen, C. J.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Fuchs, F.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

Gensty, T.

T. Gensty and W. Elsäßer, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun.256(1-3), 171–183 (2005).
[CrossRef]

Gini, E.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Gurlit, P.

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

Hamilton, D. J.

D. J. Hamilton and A. J. Orr-Ewing, “A quantum cascade laser based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air,” Appl. Phys. B102(4), 879–890 (2011).
[CrossRef]

Hinkov, B.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

Johnson, P. A.

Johnson, T. J.

Kimble, H. J.

H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron.16(4), 455–461 (1980).
[CrossRef]

Köhler, K.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

Lascola, K. M.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999).
[CrossRef]

Leavitt, R. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Lombardi, G.

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Maulini, R.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Medhi, G.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Meissner, G. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Micalizzi, F.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Mroziewicz, B.

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev.16(4), 347–366 (2008).
[CrossRef]

Muravjov, A. V.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Myers, T. L.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Orr-Ewing, A. J.

D. J. Hamilton and A. J. Orr-Ewing, “A quantum cascade laser based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air,” Appl. Phys. B102(4), 879–890 (2011).
[CrossRef]

Peale, R. E.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Pham, J. T.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Phillips, M. C.

M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012).
[CrossRef] [PubMed]

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Rhoderick, G. C.

Röpcke, J.

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Sams, R. L.

Saxena, H.

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

Schiffern, J. T.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Schram, D. C.

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Sharpe, S. W.

Taubman, M. S.

M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012).
[CrossRef] [PubMed]

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

Toschek, P. E.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999).
[CrossRef]

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

Towner, F. J.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Tsai, T.

T. Tsai and G. Wysocki, “External-cavity quantum cascade lasers with fast wavelength scanning,” Appl. Phys. B100(2), 243–251 (2010).
[CrossRef]

van der Veken, B. J.

H. Bohets and B. J. van der Veken, “On the conformational behavior of dimethyl carbonate,” Phys. Chem. Chem. Phys.1(8), 1817–1826 (1999).
[CrossRef]

Wagner, J.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

Welzel, S.

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Wysocki, G.

T. Tsai and G. Wysocki, “External-cavity quantum cascade lasers with fast wavelength scanning,” Appl. Phys. B100(2), 243–251 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

Yang, Q. K.

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

Appl. Phys. B (4)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
[CrossRef]

T. Tsai and G. Wysocki, “External-cavity quantum cascade lasers with fast wavelength scanning,” Appl. Phys. B100(2), 243–251 (2010).
[CrossRef]

D. J. Hamilton and A. J. Orr-Ewing, “A quantum cascade laser based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air,” Appl. Phys. B102(4), 879–890 (2011).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B69(3), 171–202 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002).
[CrossRef]

H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron.16(4), 455–461 (1980).
[CrossRef]

Infrared Phys. Technol. (1)

P. Gurlit, J. P. Burrows, H. Burkhard, R. Böhm, V. M. Baev, and P. E. Toschek, “Intracavity diode laser for atmospheric field measurements,” Infrared Phys. Technol.37(1), 95–98 (1996).
[CrossRef]

J. Appl. Phys. (2)

Q. K. Yang, B. Hinkov, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, R. Maulini, and J. Faist, “Rate equations analysis of external-cavity quantum cascade lasers,” J. Appl. Phys.107(4), 043109 (2010).
[CrossRef]

S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. Röpcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” J. Appl. Phys.104(9), 093115 (2008).
[CrossRef]

Opt. Commun. (1)

T. Gensty and W. Elsäßer, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun.256(1-3), 171–183 (2005).
[CrossRef]

Opt. Eng. (1)

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High performance quantum cascade lasers in the 7.3- to 7.8- μm wavelength band using strained active regions,” Opt. Eng.49(11), 111109 (2010).
[CrossRef]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev.16(4), 347–366 (2008).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

H. Bohets and B. J. van der Veken, “On the conformational behavior of dimethyl carbonate,” Phys. Chem. Chem. Phys.1(8), 1817–1826 (1999).
[CrossRef]

Proc. SPIE (2)

G. Medhi, A. V. Muravjov, H. Saxena, C. J. Fredricksen, T. Brusentsova, R. E. Peale, and O. Edwards, “Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser,” Proc. SPIE8032, 80320E, 80320E-7 (2011).
[CrossRef]

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE7608, 76080D, 76080D-11 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic and photograph of the ICA EC-QCL device.

Fig. 2
Fig. 2

(a) Output power characteristics of the QCL in various feedback configurations. (b) Output power and spectral tuning characteristics of the EC-QCL at a current of 1150 mA.

Fig. 3
Fig. 3

(a) Output power from the EC-QCL as a function of wavenumber, for a background of dry nitrogen (red line) and a mixture of 349 ppmv of DMC in dry nitrogen (green line) at a QCL injection current of 1100 mA. The black line is the calculated expectation of DMC absorption when linear absorption with a 2-cm path is used. (b) Similar traces recorded for three different QCL chip injection currents.

Fig. 4
Fig. 4

(a) Calculation of the effect of intracavity absorption on the laser output power as a function of injection current, using parameters from Table 1. (b) Calculation of the enhancement factor induced by the intracavity scheme as a function of the reduced injection current.

Fig. 5
Fig. 5

(a) Transmission data recorded for four concentrations of dimethyl carbonate intracavity absorption and associated least-squares fits using the fitting function derived from Eq. (7). (b) Linear regression of the inverse of the fitted parameter R on DMC molecular number density.

Fig. 6
Fig. 6

(a) Current sweep traces recorded for three intracavity cell contents. The sample and calibrant in this case were 116 ppmv and 58 ppmv dimethyl carbonate respectively. (b) Absorption coefficient measurements for 116 ppmv DMC sample together with the result expected using literature data [16].

Fig. 7
Fig. 7

(a) From bottom to top, raw detector signal as the laser current is scanned across threshold, demodulated signal at the 2nd harmonic showing a peak at threshold, demodulated signal at the third harmonic that can be used to lock the current source to threshold. (b) Temporal evolution of the 2f signal as the sample is switched from air to 116 ppmv of DMC and switched back to air again.

Tables (1)

Tables Icon

Table 1 Parameters used in the three-level rate-equation model.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P= B+ B 2 4AC 2A
A= g τ P ( 1 τ 21 + 1 τ 31 )
B= 1 τ P τ 21 ( 1 τ 32 + 1 τ 31 )+ I in Zg q ( 1 τ 32 1 τ 21 β τ e )
C= Zβ I in q τ e τ 21
dP dt | ICA =PεNc l L
1 τ P = 1 τ P ° + εNcl L
P' P K+Rγ τ P ° I in K+γ τ P ° I in
K= τ 32 1 + τ 31 1 τ 21 g , γ= Z( τ 31 1 τ 21 1 β τ e 1 ) q , and τ P '=R τ P °
1 R =1+ εNcl L τ P °
I thr I thr,0 =1+ εNcl L τ P °
Δ(εN) εN = Δ(ε N CAL ) ε N CAL + 2Δ I thr I thr,CAL I thr,0 .

Metrics