Abstract

We present a tunable, adaptive optical imaging probe for multimodal imaging such as optical coherence tomography and microscopy. The probe is compatible with forward-looking scanning laser imaging devices such as an endoscope. The lens configuration includes a tunable iris and two varifocal lenses, both driven by microelectrofluidics, as well as several conventional fixed focus lenses. The modulation transfer function and spot size in the focal plane is evaluated, and we show using optical simulations that there are three possible imaging modes with different transverse resolutions and focal depths.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
    [CrossRef]
  2. J. G. Fujimoto, “Optical coherence tomography,” C. R. Acad. Sci. Paris Ser. IV2, 1099–1111 (2001).
  3. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  4. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
    [CrossRef] [PubMed]
  5. J. A. Evans and N. S. Nishioka, “Endoscopic confocal microscopy,” Curr. Opin. Gastroenterol.21(5), 578–584 (2005).
    [CrossRef] [PubMed]
  6. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt.41(22), 4603–4610 (2002).
    [CrossRef] [PubMed]
  7. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express15(5), 2409–2420 (2007).
    [CrossRef] [PubMed]
  8. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
    [CrossRef]
  9. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
    [CrossRef]
  10. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
    [CrossRef]
  11. J. P. Rolland, S. Murali, P. Meemon, P. Glenn, K. P. Thompson, and K.-S. Lee, “Performance of a Liquid lens enabled optical coherence microscope with Gabor fusion,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2010), paper IWD4.
  12. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
    [CrossRef]
  13. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
    [CrossRef] [PubMed]

2012 (2)

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
[CrossRef] [PubMed]

2008 (1)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
[CrossRef]

2007 (1)

2006 (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

2005 (3)

J. A. Evans and N. S. Nishioka, “Endoscopic confocal microscopy,” Curr. Opin. Gastroenterol.21(5), 578–584 (2005).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

2004 (1)

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

2002 (1)

2001 (1)

J. G. Fujimoto, “Optical coherence tomography,” C. R. Acad. Sci. Paris Ser. IV2, 1099–1111 (2001).

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

Aljasem, K.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
[CrossRef]

Bachman, M.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Chang, J.-H.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
[CrossRef] [PubMed]

Chen, Z.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Choi, M.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
[CrossRef] [PubMed]

Christenson, T.

Descour, M. R.

Dickensheets, L. D.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Divetia, A.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Evans, J. A.

J. A. Evans and N. S. Nishioka, “Endoscopic confocal microscopy,” Curr. Opin. Gastroenterol.21(5), 578–584 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography,” C. R. Acad. Sci. Paris Ser. IV2, 1099–1111 (2001).

Gordon, L. M.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

Himmer, A. P.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Hsieh, T. H.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Jung, K.-D.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
[CrossRef] [PubMed]

Kester, R. T.

Kim, W.

Lee, E.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
[CrossRef] [PubMed]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

Lee, S.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Varifocal liquid lens based on microelectrofluidic technology,” Opt. Lett.37(21), 4377–4379 (2012).
[CrossRef] [PubMed]

Li, G. P.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Liang, C.

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

Nishioka, N. S.

J. A. Evans and N. S. Nishioka, “Endoscopic confocal microscopy,” Curr. Opin. Gastroenterol.21(5), 578–584 (2005).
[CrossRef] [PubMed]

Qi, B.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Richards-Kortum, R. R.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

Seifert, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
[CrossRef]

Sung, K. B.

Tkaczyk, T. S.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Vitkin, I. A.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Werber, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
[CrossRef]

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

Yang, X. D. V.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

Zappe, H.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
[CrossRef]

Zhang, J.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

C. R. Acad. Sci. Paris Ser. IV (1)

J. G. Fujimoto, “Optical coherence tomography,” C. R. Acad. Sci. Paris Ser. IV2, 1099–1111 (2001).

Curr. Opin. Gastroenterol. (1)

J. A. Evans and N. S. Nishioka, “Endoscopic confocal microscopy,” Curr. Opin. Gastroenterol.21(5), 578–584 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

J. Biomed. Opt. (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt.11(6), 063001 (2006).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt.10(4), 044012 (2008).
[CrossRef]

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Opt. Commun. (1)

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE8252, 82520O, 82520O–6 (2012).
[CrossRef]

Other (1)

J. P. Rolland, S. Murali, P. Meemon, P. Glenn, K. P. Thompson, and K.-S. Lee, “Performance of a Liquid lens enabled optical coherence microscope with Gabor fusion,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2010), paper IWD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics