Abstract

We present the inscription of a Light Induced Self-Written (LISW) waveguide in a 4-cyano-4′-pentylbipheny (5CB) doped photopolymer. The dynamic reorientation of the 5CB molecules in the material under applied electric field leads to birefringence in LISW waveguide and thus allows the control of the phase of the guided mode.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett.18, 1035–1037 (1993).
    [CrossRef] [PubMed]
  2. T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.
  3. T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (R-SOLNET) for Z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quantum Electron.17, 566–570 (2011).
    [CrossRef]
  4. M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
    [CrossRef]
  5. K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
    [CrossRef]
  6. K. Yamashita, H. Okada, M. Ito, E. Fukuzawa, and K. Oe, “Device parameter analyses of solid-state organic laser made by self-written active waveguide technique,” J. Lightwave Technol.27, 4570–4574 (2009).
    [CrossRef]
  7. O. Sugihara, S. Yasuda, B. Cai, K. Komatsu, and T. Kaino, “Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique,” Opt. Lett.33, 294–296 (2008).
    [CrossRef] [PubMed]
  8. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev.110, 25–55 (2010).
    [CrossRef]
  9. J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys.96, 6253 (2004).
    [CrossRef]
  10. B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
    [CrossRef]
  11. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002).
    [CrossRef]
  12. A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
    [CrossRef]
  13. J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
  14. J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
    [CrossRef]
  15. W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
    [CrossRef]
  16. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
    [CrossRef]
  17. J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
    [CrossRef]
  18. A. Barsella, H. Dorkenoo, and L. Mager, “Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication,” Appl. Phys. Lett.100, 221102 (2012).
    [CrossRef]

2012

A. Barsella, H. Dorkenoo, and L. Mager, “Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication,” Appl. Phys. Lett.100, 221102 (2012).
[CrossRef]

2011

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (R-SOLNET) for Z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quantum Electron.17, 566–570 (2011).
[CrossRef]

2010

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev.110, 25–55 (2010).
[CrossRef]

2009

2008

O. Sugihara, S. Yasuda, B. Cai, K. Komatsu, and T. Kaino, “Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique,” Opt. Lett.33, 294–296 (2008).
[CrossRef] [PubMed]

K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
[CrossRef]

2007

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
[CrossRef]

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

2004

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys.96, 6253 (2004).
[CrossRef]

2002

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002).
[CrossRef]

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

1999

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

1996

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
[CrossRef]

1993

Aoki, S.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev.110, 25–55 (2010).
[CrossRef]

Barsella, A.

A. Barsella, H. Dorkenoo, and L. Mager, “Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication,” Appl. Phys. Lett.100, 221102 (2012).
[CrossRef]

Birabassov, R.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
[CrossRef]

Bombenger, J.-P.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

Cai, B.

Carre, C.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002).
[CrossRef]

Cheval, G.

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

Crégut, O.

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev.110, 25–55 (2010).
[CrossRef]

Dorkenoo, H.

A. Barsella, H. Dorkenoo, and L. Mager, “Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication,” Appl. Phys. Lett.100, 221102 (2012).
[CrossRef]

Dorkenoo, K.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002).
[CrossRef]

Ferrio, K. B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

Ferry, J.

J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

Fort, A.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002).
[CrossRef]

Frisken, S. J.

Fukuzawa, E.

K. Yamashita, H. Okada, M. Ito, E. Fukuzawa, and K. Oe, “Device parameter analyses of solid-state organic laser made by self-written active waveguide technique,” J. Lightwave Technol.27, 4570–4574 (2009).
[CrossRef]

K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
[CrossRef]

Galstian, T.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
[CrossRef]

Gillot, F.

Gindre, D.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

Guenther, B. D.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

Hendrickx, E.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

Herlocker, J. A.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

Huber, F.

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

Hwang, W. Y.

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

Inao, M.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Ishitsuka, T.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Ito, M.

Kagami, M.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

Kaino, T.

Kawasaki, A.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

Kim, J. J.

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

Kippelen, B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
[CrossRef]

Kitanobou, A.

K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
[CrossRef]

Komatsu, K.

Li, J.

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys.96, 6253 (2004).
[CrossRef]

Mager, L.

A. Barsella, H. Dorkenoo, and L. Mager, “Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication,” Appl. Phys. Lett.100, 221102 (2012).
[CrossRef]

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett.27, 1782–1784 (2002).
[CrossRef]

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

Matsui, T.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

Meerholz, K.

B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
[CrossRef]

Mery, S.

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

Motoyoshi, K.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Muller, R.

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

Nicoud, J.-F.

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

Oe, K.

K. Yamashita, H. Okada, M. Ito, E. Fukuzawa, and K. Oe, “Device parameter analyses of solid-state organic laser made by self-written active waveguide technique,” J. Lightwave Technol.27, 4570–4574 (2009).
[CrossRef]

K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
[CrossRef]

Oh, M. C.

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

Okada, H.

Ono, S.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (R-SOLNET) for Z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quantum Electron.17, 566–570 (2011).
[CrossRef]

Peyghambarian, N.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
[CrossRef]

Ribierre, J.-C.

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

Roman, J.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Sandalphon,

B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
[CrossRef]

Shin, S. Y.

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

Sotoyama, W.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Sugihara, O.

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev.110, 25–55 (2010).
[CrossRef]

Takahashi, Y.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Tork, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
[CrossRef]

Tsuchimori, M.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

Tsukamoto, K.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Vola, J.-P.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

Wakabayashi, K.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (R-SOLNET) for Z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quantum Electron.17, 566–570 (2011).
[CrossRef]

Wang, W. C. V.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Wu, S.-T.

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys.96, 6253 (2004).
[CrossRef]

Yamashita, K.

K. Yamashita, H. Okada, M. Ito, E. Fukuzawa, and K. Oe, “Device parameter analyses of solid-state organic laser made by self-written active waveguide technique,” J. Lightwave Technol.27, 4570–4574 (2009).
[CrossRef]

K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
[CrossRef]

Yamashita, T.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

Yasuda, S.

Yonemura, M.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

Yoshimura, T.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (R-SOLNET) for Z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quantum Electron.17, 566–570 (2011).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

Zohrabyan, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
[CrossRef]

Zyung, T.

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

Appl. Phys. Lett.

K. Yamashita, E. Fukuzawa, A. Kitanobou, and K. Oe, “Self-written active waveguide for integrated optical amplifiers,” Appl. Phys. Lett.92, 051102 (2008).
[CrossRef]

B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers, ” Appl. Phys. Lett.68, 1748(1996).
[CrossRef]

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett.91, 111912 (2007).
[CrossRef]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett.74, 2253–2255 (1999).
[CrossRef]

A. Barsella, H. Dorkenoo, and L. Mager, “Near infrared two-photon self-confinement in photopolymers for light induced self-written waveguides fabrication,” Appl. Phys. Lett.100, 221102 (2012).
[CrossRef]

Chem. Rev.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev.110, 25–55 (2010).
[CrossRef]

IEEE J. Quantum Electron.

W. Y. Hwang, J. J. Kim, T. Zyung, M. C. Oh, and S. Y. Shin, “TE-TM mode converter in a poled-polymer waveguide,” IEEE J. Quantum Electron.32, 1054–1062 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Yoshimura, K. Wakabayashi, and S. Ono, “Analysis of reflective self-organized lightwave network (R-SOLNET) for Z-connections in 3-D optical circuits by the finite-difference time-domain method,” IEEE J. Sel. Top. Quantum Electron.17, 566–570 (2011).
[CrossRef]

J. Appl. Phys.

J. Li and S.-T. Wu, “Self-consistency of Vuks equations for liquid-crystal refractive indices,” J. Appl. Phys.96, 6253 (2004).
[CrossRef]

J.-C. Ribierre, G. Cheval, F. Huber, L. Mager, A. Fort, R. Muller, S. Mery, and J.-F. Nicoud, “Direct comparison of mechanical and electro-optic responses of a low Tg photorefractive doped polymer,” J. Appl. Phys.91, 1710–1712 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. Dorkenoo, A. Fort, and C. Carre, “High resolution patterning of quadratic non-linear optical properties in doped photopolymer thin films,” Opt. Commun.280, 192–196 (2007).
[CrossRef]

Opt. Lett.

Other

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method (SOLNET) and its application to film optical circuit substrates,” Electronic Components and Technology Conference 50th (Las Vegas, Nevada, 2000), pp. 962–969.

M. Kagami, T. Yamashita, M. Yonemura, A. Kawasaki, M. Tsuchimori, and T. Matsui, “Light-induced self-written three-dimensional polymer optical waveguide for module fabrication and interconnection,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (Anaheim, Calif., 2007), OThH4.
[CrossRef]

J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Built-up of the LISW. The injecting fiber is on the left of the pictures. a) with 5 min. prepolymerization, b) with 1 min. prepolymerization

Fig. 2
Fig. 2

Experimental setup. Light from the Ar+ laser is coupled into the fibers through ×10 microscope objectives. Fibers are coupled with the LISW waveguide in each cell. The two beams at the exit of the two LISW waveguides interfere. The central part of the interference pattern is selected using a diaphragm and send to a photodiode. The active cell is connected to a high voltage amplifier driven by a function generator.

Fig. 3
Fig. 3

Signal of the time varying intensity of the inner ring of the interference pattern. Red: applied voltage. Black: intensity modulation measured by the photodiode.

Fig. 4
Fig. 4

Variation of the EO response with the applied voltage. The red line corresponds to a linear fit. The error bars are calculated from the Δφ measurement uncertainties.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 2 π n 4 45 N f Δ α ( f 0 μ k B T ) 2 E 2 = 1 2 n 3 r E .
r = λ Δ φ e π n 3 V d

Metrics