Abstract

The phenomenon called Electromagnetically Induced Transparency (EIT) may induce different types of correlation between two optical fields interacting with an ensemble of atoms. It is presently well known, for example, that in the vicinity of an EIT resonance the dominant correlations at low powers turn into anti-correlations as power increases. Such correlation spectra present striking power-broadening-independent features, with the best condition for measuring the characteristic linewidth occurring at the highest powers. In the present work we investigate the physical mechanisms responsible for this set of observations. Our approach is first to reproduce these effects in a better controlled experimental setup: a cold atomic ensemble, obtained from a magneto-optical trap. The results from this conceptually simpler system were then compared to a correspondingly simpler theory, which clearly relates the observed features to the interplay between two key aspects of EIT: the transparency itself and the steep normal dispersion near two-photon resonance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 259–354 (1996).
  2. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
    [CrossRef]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
    [CrossRef]
  4. H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
    [CrossRef] [PubMed]
  5. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
    [CrossRef]
  6. R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
    [CrossRef]
  7. C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
    [CrossRef]
  8. V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A72, 065801 (2005).
    [CrossRef]
  9. L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
    [CrossRef]
  10. Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
    [CrossRef]
  11. W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
    [CrossRef]
  12. O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
    [CrossRef]
  13. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57, 2996–3002 (1998).
    [CrossRef]
  14. A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
    [CrossRef]
  15. D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
    [CrossRef]
  16. D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
    [CrossRef]
  17. G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
    [CrossRef]
  18. D. H. McIntyre, C. E. Fairchild, J. Cooper, and R. Walser, “Diode-laser noise spectroscopy of rubidium,” Opt. Lett.18, 1816–1818 (1993).
    [CrossRef] [PubMed]
  19. T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
    [CrossRef]
  20. L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
    [CrossRef]

2012

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

2011

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

2010

W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
[CrossRef]

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
[CrossRef]

G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
[CrossRef]

2009

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

2008

H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
[CrossRef] [PubMed]

D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
[CrossRef]

2007

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

2005

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A72, 065801 (2005).
[CrossRef]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
[CrossRef]

2003

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
[CrossRef]

1999

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
[CrossRef]

1998

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57, 2996–3002 (1998).
[CrossRef]

1996

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 259–354 (1996).

1995

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

1993

Aguirre Gómez, J. G.

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

Akulshin, A. M.

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57, 2996–3002 (1998).
[CrossRef]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 259–354 (1996).

Ariunbold, G. O.

G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
[CrossRef]

Barreiro, S.

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57, 2996–3002 (1998).
[CrossRef]

Baryakhtar, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Bramati, A.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Chalupczak, W.

W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
[CrossRef]

Cooper, J.

Crescimanno, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Cruz, L. S.

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

Fairchild, C. E.

Felinto, D.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
[CrossRef]

D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
[CrossRef]

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

Feng, L.

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

França Santos, M.

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

Garrido Alzar, C. L.

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

Gawlik, W.

W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
[CrossRef]

Giacobino, E.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Gonzalez, N.

D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
[CrossRef]

Grangier, P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Grelu, P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Hohensee, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Jiang, L.

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Josephs-Franks, P.

W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
[CrossRef]

Jost, V.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
[CrossRef] [PubMed]

Kupriyanov, D. V.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Laurat, J.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Leblanc, J. R.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Levenson, M. D.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Lezama, A.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
[CrossRef]

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57, 2996–3002 (1998).
[CrossRef]

Li, P.

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

Lipsich, A.

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
[CrossRef]

Lombardi, P.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Lukin, M. D.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
[CrossRef]

Lutwak, R.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Martin, F.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Martinelli, M.

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

McIntyre, D. H.

Mescher, M.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Mishina, O. S.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Moretti, D.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
[CrossRef]

D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
[CrossRef]

Nussenzveig, P.

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

Ortalo, J.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Peak, G. M.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Phillips, D. F.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Poizat, J. P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Pustelny, S.

W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
[CrossRef]

Rashed, A.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Roch, J. F.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Rostovtsev, Y. V.

G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A72, 065801 (2005).
[CrossRef]

Sautenkov, V. A.

G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A72, 065801 (2005).
[CrossRef]

Scherman, M.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Scully, M. O.

G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
[CrossRef]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A72, 065801 (2005).
[CrossRef]

Serkland, D. K.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Sheremet, A. S.

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

Tabosa, J. W. R.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
[CrossRef]

D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
[CrossRef]

Tepolt, G.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Valente, P.

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

Van Camp, M.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
[CrossRef]

Varghese, M.

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Walser, R.

Walsworth, R. L.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Wang, T.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Wen, J.

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

Xiao, Y.

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Yelin, S. F.

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

Zhang, T. C.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Appl. Phys. B

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
[CrossRef]

Eur. Phys. J. D

L. S. Cruz, D. Felinto, J. G. Aguirre Gómez, M. Martinelli, P. Valente, A. Lezama, and P. Nussenzveig, “Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency,” Eur. Phys. J. D41, 531–539 (2007).
[CrossRef]

Europhys. Lett.

C. L. Garrido Alzar, L. S. Cruz, J. G. Aguirre Gómez, M. França Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in Electromagnetically Induced Transparency,” Europhys. Lett.61, 485–491 (2003).
[CrossRef]

J. Mod. Opt.

G. O. Ariunbold, Y. V. Rostovtsev, V. A. Sautenkov, and M. O. Scully, “Intensity correlation and anti-correlations in coherently driven atomic vapor,” J. Mod. Opt.57, 1417–1427 (2010).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys.

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B: At. Mol. Opt. Phys.43, 115502 (2010).
[CrossRef]

Nature

H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A72, 065801 (2005).
[CrossRef]

Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy lasers,” Phys. Rev. A80, 041805 (2009).
[CrossRef]

W. Chalupczak, P. Josephs-Franks, S. Pustelny, and W. Gawlik, “Optical-radio-frequency resonances free from power broadening,” Phys. Rev. A81, 013422 (2010).
[CrossRef]

O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov, J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ transition with multiple excited levels,” Phys. Rev. A83, 053809 (2011).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57, 2996–3002 (1998).
[CrossRef]

A. Lezama, S. Barreiro, A. Lipsich, and A. M. Akulshin, “Coherent two-field spectroscopy of degenerate two-level systems,” Phys. Rev. A61, 013801 (1999).
[CrossRef]

D. Moretti, N. Gonzalez, D. Felinto, and J. W. R. Tabosa, “Dynamics of Bragg diffraction in a stored light grating in cold atoms,” Phys. Rev. A78, 023811 (2008).
[CrossRef]

Phys. Rev. Lett.

L. Feng, P. Li, Y. Xiao, L. Jiang, and J. Wen, “Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth,” Phys. Rev. Lett.109, 233006 (2012).
[CrossRef]

Prog. Opt.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt.35, 259–354 (1996).

Quamt. Semiclass. Opt.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Martin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum-noise of free-running and externally-stabilized laser-diodes,” Quamt. Semiclass. Opt.7, 601–613 (1995).
[CrossRef]

Rev. Mod. Phys.

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Other

R. Lutwak, A. Rashed, D. K. Serkland, G. M. Peak, M. Varghese, G. Tepolt, J. R. Leblanc, and M. Mescher, “The Miniature Atomic Clock - Pre-Production Results,” in proceedings of TimeNav07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Effective three-level system describing our experiment. Fields 1,2 have frequencies ω1, ω2.ω0 is the frequency for the transition between either ground states 1,2 and the excited state 0. The corresponding detunings are δi = ωiω0. (b) and (c) present plots for real-time signals at the detectors for fields 1,2 (gray and black curves) after interaction with the sample, and for (b) P2 ≈ 30μW and (c) P2 ≈ 500μW, with δ2 = 0 and δ1 = 0.73MHz in both cases.

Fig. 2
Fig. 2

Measurement of g2(0) as a function of δ1, for δ2 = 0 and P2 ≈ 30 μW (squares), 100 μW (circles), 300 μW (triangles), and 500 μW (diamonds), respectively. The lines are just guides to the eyes.

Fig. 3
Fig. 3

Theoretical g2(0) as a function of δ1, for δ2 = 0. The Rabi frequencies for each curve are Ω1 = 0.75Ω2 and (solid curve) Ω2 = 0.09 Γ, (dashed) 0.17Γ, (dotted) 0.29Γ, and (dash-dotted) 0.37Γ, respectively. The other parameters are Γ/2π = 5.2 MHz and γ/2π = 150 kHz.

Fig. 4
Fig. 4

(Color online) (a) Real part of the coherences as a function of δ1 for two Rabi frequencies. The solid and dashed (dotted and dash-dotted) curves are the results for Re〈p1〉 and Re〈p2〉, respectively, for Ω2 = 0.09 Γ (Ω2 = 0.29 Γ). (b) Imaginary part of 〈p1〉 as a function of δ1 for each of the four curves in Fig. 3, following the same convention for line types as in that figure.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

g 2 ( 0 ) = δ I 1 ( t ) δ I 2 ( t ) δ I 1 ( t ) 2 δ I 2 ( t ) 2 ,
g 2 ( 0 ) = δ Im p 1 ( t ) δ Im p 2 ( t ) δ Im p 1 ( t ) 2 δ Im p 2 ( t ) 2 ,
p 1 = F | Ω 2 | 2 Ω 1 ( R 1 i C 1 ) ,
p 2 = F | Ω 1 | 2 Ω 2 ( R 2 i C 2 ) ,
C 1 = C 2 = Γ 2 + γ ( | Ω 1 | 2 + | Ω 2 | 2 δ 12 2 + γ 2 ) ,
R 1 = δ 1 + 2 γ | Ω 1 | 2 ( δ 1 + δ 2 ) Γ ( δ 12 2 + γ 2 ) δ 12 ( | Ω 1 | 2 + | Ω 2 | 2 δ 12 2 + γ 2 ) ,
R 2 = δ 2 + 2 γ | Ω 2 | 2 ( δ 1 + δ 2 ) Γ ( δ 12 2 + γ 2 ) + δ 12 ( | Ω 1 | 2 + | Ω 2 | 2 δ 12 2 + γ 2 ) .
Im p i = cos ( ϕ ) Im p i + sin ( ϕ ) Re p i .
δ Im p i δ Im p j ϕ = 1 2 Re p i Re p j + 1 2 Im p i Im p j ,
g 2 ( 0 ) = R 1 R 2 + C 1 C 2 ( R 1 2 + C 1 2 ) ( R 2 2 + C 2 2 ) .

Metrics