Abstract

We propose a novel all-solid rod-type fiber structure that presents a cylindrical symmetry and low refractive-index contrasts. Effectively single-mode propagation for the fundamental mode is ensured thanks to resonant couplings between Higher Order Modes (HOMs) and cladding modes. Numerical simulations demonstrate the possibility of achieving a fundamental mode effective area as large as 5000µm2 at a wavelength of 1.06μm in fibers ensuring a high leakage loss ratio (>100) between the HOMs and the fundamental mode while keeping the fundamental mode leakage losses at a level lower than 0.2dB/m. Further scaling to an effective area of 12,200µm2 at 1.06μm in an effectively single-mode fiber is also presented by exploiting the power delocalization of several HOMs on top of the high-leakage loss filtering.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” ASSP Paper AWA1 (2010).
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
    [CrossRef] [PubMed]
  3. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  4. C. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” CLEO paper CTuBB3 (2007).
  5. A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
    [CrossRef]
  6. M. Devautour, P. Roy, and S. Fevrier, “3D Modeling of modal competition in fiber laser: application to HOM suppression in multi-layered fiber,” Joint CLEO Poster Session II (JWA) (2009).
  7. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
    [CrossRef]
  8. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express20(14), 15061–15070 (2012).
    [CrossRef] [PubMed]
  9. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express12(7), 1313–1319 (2004).
    [CrossRef] [PubMed]
  10. L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
    [CrossRef]
  11. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006).
    [CrossRef] [PubMed]
  12. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  13. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  14. C. D. Brooks and F. D. Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett.89(11), 111119 (2006), http://apl.aip.org/resource/1/applab/v89/i11/p111119_s1 .
    [CrossRef]
  15. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express20(7), 7263–7273 (2012).
    [CrossRef] [PubMed]
  16. L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. K. Thomas, M. Moore, L. Fu, and M. E. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 μm,” CLEO post-deadline paper CPDB6 (2008).
  17. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
    [CrossRef] [PubMed]
  18. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. & App. 1, 1–5 (2012). http://www.nature.com/lsa/journal/v1/n4/abs/lsa20128a.html
  19. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
    [CrossRef] [PubMed]
  20. Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
    [CrossRef]
  21. G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express14(12), 5682–5687 (2006).
    [CrossRef] [PubMed]
  22. F. Jansen, F. Stutzki, H. J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010).
    [CrossRef] [PubMed]

2012 (3)

2010 (1)

2009 (3)

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

2008 (2)

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
[CrossRef]

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

2006 (4)

2005 (1)

2004 (2)

2000 (1)

Agha, Y. O.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
[CrossRef]

Alkeskjold, T. T.

Baumgartl, M.

Boyer, P.

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. D. Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett.89(11), 111119 (2006), http://apl.aip.org/resource/1/applab/v89/i11/p111119_s1 .
[CrossRef]

Deguil-Robin, N.

Dianov, E. M.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

Dong, L.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

Ermeneux, S.

Fermann, M. E.

Fevrier, S.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

Fini, J. M.

Fu, L.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

Fujimaki, M.

Goldberg, L.

Guenneau, S.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
[CrossRef]

Jakobsen, C.

Jansen, F.

Jauregui, C.

Jeong, Y.

Jørgensen, M. M.

Kashiwagi, M.

Kliner, D. A. V.

Koplow, J. P.

Kumar, A.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Lægsgaard, J.

Laurila, M.

Li, J.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

Liem, A.

Likhachev, M. E.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

Limpert, J.

Manek-Hönninger, I.

Marcinkevicius, A.

Matsuo, S.

McKay, H. A.

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

Nicolet, A.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
[CrossRef]

Nilsson, J.

Nolte, S.

Ohta, M.

Otto, H. J.

Payne, D. N.

Petersen, S. R.

Petersson, A.

Rastogi, V.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Reich, M.

Renversez, G.

Röser, F.

Rothhardt, J.

Sagrini, A.

Sahu, J. K.

Saitoh, K.

Salin, F.

Schmidt, O.

Schreiber, T.

Stutzki, F.

Suzuki, S.

Takenaga, K.

Tanigawa, S.

Teodoro, F. D.

C. D. Brooks and F. D. Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett.89(11), 111119 (2006), http://apl.aip.org/resource/1/applab/v89/i11/p111119_s1 .
[CrossRef]

Tünnermann, A.

Winful, H. G.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

Wu, T. W.

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

Yvernault, P.

Zellmer, H.

Zolla, F.

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

C. D. Brooks and F. D. Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett.89(11), 111119 (2006), http://apl.aip.org/resource/1/applab/v89/i11/p111119_s1 .
[CrossRef]

COMPEL (1)

Y. O. Agha, F. Zolla, A. Nicolet, and S. Guenneau, “On the use of PML for the computation of leaky modes: an application to microstructured optical fibers,” COMPEL27(1), 95–109 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Dong, T. W. Wu, H. A. Mckay, L. Fu, J. Li, and H. G. Winful, “All glass leakage channel fibers with highly fluorine-doped silica pump cladding,” IEEE J. Sel. Top. Quantum Electron.15, 47–53 (2009).
[CrossRef]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Opt. Express (10)

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express12(7), 1313–1319 (2004).
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005).
[CrossRef] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006).
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

G. Renversez, P. Boyer, and A. Sagrini, “Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling,” Opt. Express14(12), 5682–5687 (2006).
[CrossRef] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express18(26), 26834–26842 (2010).
[CrossRef] [PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express20(7), 7263–7273 (2012).
[CrossRef] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express20(14), 15061–15070 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (5)

M. Devautour, P. Roy, and S. Fevrier, “3D Modeling of modal competition in fiber laser: application to HOM suppression in multi-layered fiber,” Joint CLEO Poster Session II (JWA) (2009).

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” ASSP Paper AWA1 (2010).

C. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” CLEO paper CTuBB3 (2007).

L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. K. Thomas, M. Moore, L. Fu, and M. E. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170 μm,” CLEO post-deadline paper CPDB6 (2008).

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light: Sci. & App. 1, 1–5 (2012). http://www.nature.com/lsa/journal/v1/n4/abs/lsa20128a.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic cross-section of the proposed fiber structure. Blue and white colours represent high and low-refractive index regions respectively. (b) Refractive index profile of the proposed optical fiber, where rc is the radius of the core, d is the thickness of the high-index rings (resonant rings), t is the thickness of the low-index rings (trenches), and Δn is the refractive-index difference between the resonant rings and the trenches.

Fig. 2
Fig. 2

Leakage losses spectrum of the fundamental core mode and the first HOM of: (a) the single trench fiber and (b) a fiber with three trenches. (c) Surface profile of the transverse electric field component of the fundamental and the first higher order mode(s) of the single and three trench fiber. (d) Transverse electric field component along the x-axis of the first higher mode of both fibers. The structural parameters are rc = 50µm, t = 1.4µm, d = 31μm, and Δn = 0.001 at λ = 1.06μm.

Fig. 3
Fig. 3

Leakage losses of the fundamental mode and of HOMs of low order as a function of the resonant ring thickness (d) at a wavelength of 1.06µm for a fiber with Δn = 0.001, rc = 50µm, and t = 1.4µm. Inset shows the surface profile of the transverse component of the electric field for various modes at d = 31µm.

Fig. 4
Fig. 4

(a) Leakage losses of the fundamental mode and lowest leakage losses level of the higher order mode as a function of d for a 100μm core diameter fiber at 1.06μm wavelength (a) at Δn = 0.001 for different t and (b) at t = 1.4μm for different Δn.

Fig. 5
Fig. 5

(a) Leakage losses of the fundamental mode and of HOMs of low order as a function of d at λ = 1.06µm for a fiber with Δn = 0.001, rc = 70µm, and t = 1µm. (b) Fraction of power in the core for LP01 and LP11 modes as a function of d at λ = 1.06µm of the same fiber.

Fig. 6
Fig. 6

Leakage losses, at λ = 1.06µm, of the fundamental mode and lowest leakage loss level of the higher-order modes as a function of d for: (a) different t for a fixed Δn of 0.001 as well as for: (b) different Δn for a fixed t of 1μm for a 140µm-diameter core fiber.

Fig. 7
Fig. 7

Leakage losses, at λ=1.06µm and rc=50µm of (a) the fundamental mode at different Δnc at t=1.6µm and Δn=0.001 of (b) the fundamental mode and HOMs lowest leakage loss level for different t and Δn at Δnc=-1x10-4.

Metrics