Abstract

The analysis of the change in residual wavefront aberrations after laser refractive surgery is important for the development of visual correction technology. Based on the ablation profile for wavefront-guided refractive surgery including optical zone and transition zone, the effect of pupil size on residual wavefront aberrations was studied. The research revealed that the optical zone to pupil ratio had a significant influence on the residual wavefront aberrations. The residual spherical aberration and coma were obviously larger than other individual Zernike higher-order terms when pupil diameter was larger than the optical zone size, and they increased rapidly as the pupil size increased. In addition, when the ablation zone diameter was kept constant, the residual higher-order aberrations increased rapidly as the blend coefficient increased for a 6mm or 7mm pupil. Furthermore, the residual higher-order aberrations with treatment decentration were distinctly larger than those without decentration. In the achievement of the best postoperative visual performance, the design of ablation profile played a crucial role in decrease of the residual wavefront aberrations after refractive surgery, especially optical zone size and the ablation pattern of transition zone.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Lee, S. J. Seo, and S. C. Shin, “Topography-guided excimer laser ablation of irregular cornea resulting from penetrating injury,” J. Cataract Refract. Surg.28(1), 186–188 (2002).
    [CrossRef] [PubMed]
  2. K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
    [CrossRef] [PubMed]
  3. N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
    [CrossRef] [PubMed]
  4. F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom.92(3), 320–327 (2009).
    [CrossRef] [PubMed]
  5. S. C. Schallhorn and J. A. Venter, “One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg.25(7Suppl), S634–S641 (2009).
    [PubMed]
  6. T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
    [CrossRef] [PubMed]
  7. Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
    [PubMed]
  8. J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg.31(12), 2272–2280 (2005).
    [CrossRef] [PubMed]
  9. P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
    [CrossRef] [PubMed]
  10. L. Wang and D. D. Koch, “Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract Refract. Surg.34(12), 2057–2062 (2008).
    [CrossRef] [PubMed]
  11. J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
    [CrossRef] [PubMed]
  12. S. Bará, J. Arines, J. Ares, and P. Prado, “Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils,” J. Opt. Soc. Am. A23(9), 2061–2066 (2006).
    [CrossRef] [PubMed]
  13. A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A18(5), 1003–1015 (2001).
    [CrossRef] [PubMed]
  14. S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg.25(9), 1191–1197 (1999).
    [CrossRef] [PubMed]
  15. T. Gamaly, “LASIK with the optimized aspheric transition zone and cross-cylinder technique for the treatment of astigmatism from 1.00 to 4.25 diopters,” J. Refract. Surg.25(10Suppl), S927–S930 (2009).
    [CrossRef] [PubMed]
  16. R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
    [CrossRef] [PubMed]
  17. M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
    [CrossRef] [PubMed]
  18. M. A. el Danasoury, “Prospective bilateral study of night glare after laser in situ keratomileusis with single zone and transition zone ablation,” J. Refract. Surg.14(5), 512–516 (1998).
    [PubMed]
  19. K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
    [PubMed]
  20. M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
    [CrossRef] [PubMed]
  21. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A11(7), 1949–1957 (1994).
    [CrossRef] [PubMed]
  22. Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng.12, 406–410 (2004).
  23. F. Lihua, H. Xingdao, and C. Fengying, “Theoretical analysis of wavefront aberration from treatment decentration with oblique incidence after conventional laser refractive surgery,” Opt. Express18(21), 22418–22431 (2010).
    [CrossRef] [PubMed]
  24. L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
    [PubMed]
  25. S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg.26(10), 731–743 (2010).
    [CrossRef] [PubMed]
  26. H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
    [CrossRef] [PubMed]
  27. J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
    [CrossRef] [PubMed]
  28. G. M. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula,” J. Opt. Soc. Am. A23(3), 539–543 (2006).
    [CrossRef] [PubMed]
  29. R. A. Applegate, W. J. Donnelly, J. D. Marsack, D. E. Koenig, and K. Pesudovs, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A24(3), 578–587 (2007).
    [CrossRef] [PubMed]
  30. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
    [CrossRef] [PubMed]
  31. P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg.31(1), 39–47 (2005).
    [CrossRef] [PubMed]
  32. M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
    [PubMed]
  33. M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
    [CrossRef] [PubMed]
  34. M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
    [CrossRef] [PubMed]
  35. Y. Kwon and S. Bott, “Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye (Lond.)23(9), 1845–1850 (2009).
    [CrossRef] [PubMed]
  36. Y. Kwon, M. Choi, and S. Bott, “Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam,” Opt. Express16(16), 11808–11821 (2008).
    [CrossRef] [PubMed]
  37. S. Arba-Mosquera and D. de Ortueta, “Geometrical analysis of the loss of ablation efficiency at non-normal incidence,” Opt. Express16(6), 3877–3895 (2008).
    [CrossRef] [PubMed]
  38. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express17(17), 15292–15307 (2009).
    [CrossRef] [PubMed]
  39. J. R. Jiménez, J. J. Castro, C. Ortiz, and R. G. Anera, “Testing a model for excimer laser-ablation rates on corneal shape after refractive surgery,” Opt. Lett.35(11), 1789–1791 (2010).
    [CrossRef] [PubMed]
  40. Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
    [PubMed]
  41. P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
    [PubMed]
  42. T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
    [CrossRef] [PubMed]

2011 (1)

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

2010 (5)

F. Lihua, H. Xingdao, and C. Fengying, “Theoretical analysis of wavefront aberration from treatment decentration with oblique incidence after conventional laser refractive surgery,” Opt. Express18(21), 22418–22431 (2010).
[CrossRef] [PubMed]

S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg.26(10), 731–743 (2010).
[CrossRef] [PubMed]

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

J. R. Jiménez, J. J. Castro, C. Ortiz, and R. G. Anera, “Testing a model for excimer laser-ablation rates on corneal shape after refractive surgery,” Opt. Lett.35(11), 1789–1791 (2010).
[CrossRef] [PubMed]

2009 (9)

L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
[PubMed]

Y. Kwon and S. Bott, “Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye (Lond.)23(9), 1845–1850 (2009).
[CrossRef] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express17(17), 15292–15307 (2009).
[CrossRef] [PubMed]

F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom.92(3), 320–327 (2009).
[CrossRef] [PubMed]

S. C. Schallhorn and J. A. Venter, “One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg.25(7Suppl), S634–S641 (2009).
[PubMed]

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
[CrossRef] [PubMed]

T. Gamaly, “LASIK with the optimized aspheric transition zone and cross-cylinder technique for the treatment of astigmatism from 1.00 to 4.25 diopters,” J. Refract. Surg.25(10Suppl), S927–S930 (2009).
[CrossRef] [PubMed]

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

R. A. Applegate, W. J. Donnelly, J. D. Marsack, D. E. Koenig, and K. Pesudovs, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A24(3), 578–587 (2007).
[CrossRef] [PubMed]

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

2006 (4)

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

G. M. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula,” J. Opt. Soc. Am. A23(3), 539–543 (2006).
[CrossRef] [PubMed]

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

S. Bará, J. Arines, J. Ares, and P. Prado, “Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils,” J. Opt. Soc. Am. A23(9), 2061–2066 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg.31(12), 2272–2280 (2005).
[CrossRef] [PubMed]

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg.31(1), 39–47 (2005).
[CrossRef] [PubMed]

2004 (3)

Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng.12, 406–410 (2004).

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

2002 (2)

D. H. Lee, S. J. Seo, and S. C. Shin, “Topography-guided excimer laser ablation of irregular cornea resulting from penetrating injury,” J. Cataract Refract. Surg.28(1), 186–188 (2002).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

2001 (3)

A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A18(5), 1003–1015 (2001).
[CrossRef] [PubMed]

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

1999 (2)

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg.25(9), 1191–1197 (1999).
[CrossRef] [PubMed]

1998 (3)

M. A. el Danasoury, “Prospective bilateral study of night glare after laser in situ keratomileusis with single zone and transition zone ablation,” J. Refract. Surg.14(5), 512–516 (1998).
[PubMed]

K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
[PubMed]

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

1996 (1)

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

1994 (1)

Agarwal,

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Agarwal, A.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Airaghi, P.

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

Amano, S.

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Anera, R. G.

Applegate, R. A.

R. A. Applegate, W. J. Donnelly, J. D. Marsack, D. E. Koenig, and K. Pesudovs, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A24(3), 578–587 (2007).
[CrossRef] [PubMed]

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

Arba-Mosquera, S.

Arbelaez, M. C.

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
[CrossRef] [PubMed]

Ares, J.

Arines, J.

Azzolini, M.

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

Bará, S.

Basuthkar, S.

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
[CrossRef] [PubMed]

Beck, A. P.

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
[CrossRef] [PubMed]

Bille, J. F.

Bott, S.

Y. Kwon and S. Bott, “Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye (Lond.)23(9), 1845–1850 (2009).
[CrossRef] [PubMed]

Y. Kwon, M. Choi, and S. Bott, “Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam,” Opt. Express16(16), 11808–11821 (2008).
[CrossRef] [PubMed]

Bühren, J.

J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg.31(12), 2272–2280 (2005).
[CrossRef] [PubMed]

Cagil, N.

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

Cakmak, H. B.

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

Camesasca, F. I.

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg.31(1), 39–47 (2005).
[CrossRef] [PubMed]

Castro, J. J.

Choi, M.

Chu, R.

L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
[PubMed]

Coorpender, S. J.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

Corbett, M. C.

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Cox, I. G.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A18(5), 1003–1015 (2001).
[CrossRef] [PubMed]

Dai, G. M.

Darvish, N.

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

De Molfetta, V.

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

de Ortueta, D.

Donnelly, W. J.

Dorronsoro, C.

Doshi,

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Doshi, S.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Dougherty, P. J.

F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom.92(3), 320–327 (2009).
[CrossRef] [PubMed]

El Danasoury, M. A.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

M. A. el Danasoury, “Prospective bilateral study of night glare after laser in situ keratomileusis with single zone and transition zone ablation,” J. Refract. Surg.14(5), 512–516 (1998).
[PubMed]

Endl, M. J.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

Falavarjani, K. G.

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

Febbraro, J. L.

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

Fengying, C.

Ferc, A.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Ferc, S.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Frco, A.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Frsh, S.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Frsh, T.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Fsvh,

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Fujikado, T.

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Gamaly, T.

T. Gamaly, “LASIK with the optimized aspheric transition zone and cross-cylinder technique for the treatment of astigmatism from 1.00 to 4.25 diopters,” J. Refract. Surg.25(10Suppl), S927–S930 (2009).
[CrossRef] [PubMed]

Gatinel, D.

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

Goelz, S.

Gordiz, A.

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

Grimm, B.

Guirao, A.

Hashemi, M.

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

Hayashi, H.

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

He, J. C.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

Heacock, G.

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Hirohara, Y.

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Howland, H. C.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

Hwang, B. S.

S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg.26(10), 731–743 (2010).
[CrossRef] [PubMed]

Jabri, B. A.

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
[CrossRef] [PubMed]

Jacob,

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Jiménez, J. R.

Jin, Y.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

Kaji, Y.

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

Kanjani, N.

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

Kawana, K.

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

Khan, H. N.

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

Klyce, S. D.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

Koch, D. D.

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

L. Wang and D. D. Koch, “Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract Refract. Surg.34(12), 2057–2062 (2008).
[CrossRef] [PubMed]

Koenig, D. E.

Kohnen, T.

J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg.31(12), 2272–2280 (2005).
[CrossRef] [PubMed]

Kosaki, R.

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

Kühne, C.

J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg.31(12), 2272–2280 (2005).
[CrossRef] [PubMed]

Kwon, Y.

Y. Kwon and S. Bott, “Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye (Lond.)23(9), 1845–1850 (2009).
[CrossRef] [PubMed]

Y. Kwon, M. Choi, and S. Bott, “Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam,” Opt. Express16(16), 11808–11821 (2008).
[CrossRef] [PubMed]

Lee, D. H.

D. H. Lee, S. J. Seo, and S. C. Shin, “Topography-guided excimer laser ablation of irregular cornea resulting from penetrating injury,” J. Cataract Refract. Surg.28(1), 186–188 (2002).
[CrossRef] [PubMed]

Lee, J.

S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg.26(10), 731–743 (2010).
[CrossRef] [PubMed]

Lee, S. B.

S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg.26(10), 731–743 (2010).
[CrossRef] [PubMed]

Liang, J.

Liao, W.

Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng.12, 406–410 (2004).

Lihua, F.

Lozano, D.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

Macrae, S.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg.25(9), 1191–1197 (1999).
[CrossRef] [PubMed]

Macsai, M. S.

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
[CrossRef] [PubMed]

Maeda, N.

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Marcos, S.

Marsack, J. D.

Marshall, J.

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Martinez, C. E.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

McDonald, M. B.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

Merayo-Lloves, J.

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

Mihashi, T.

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Miyata, K.

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Modarres, M.

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

Mosquera, S. A.

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
[CrossRef] [PubMed]

Mrochen, M.

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

Niu, Y.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

O’Brart, D. P.

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Okamoto, S.

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

Oliver, K. M.

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Ortiz, C.

Oshika, T.

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

Padmanabhan, P.

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
[CrossRef] [PubMed]

Pesudovs, K.

Porter, J.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

Prado, P.

Radice, P.

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

Ravage, Z. B.

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
[CrossRef] [PubMed]

Remon, L.

Saad, A.

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

Samejima, T.

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Sanjari, M. S.

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

Schallhorn, S. C.

S. C. Schallhorn and J. A. Venter, “One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg.25(7Suppl), S634–S641 (2009).
[PubMed]

Seiler, T.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

Seo, S. J.

D. H. Lee, S. J. Seo, and S. C. Shin, “Topography-guided excimer laser ablation of irregular cornea resulting from penetrating injury,” J. Cataract Refract. Surg.28(1), 186–188 (2002).
[CrossRef] [PubMed]

Serefli, S.

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

Shen, J.

Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng.12, 406–410 (2004).

Shin, S. C.

D. H. Lee, S. J. Seo, and S. C. Shin, “Topography-guided excimer laser ablation of irregular cornea resulting from penetrating injury,” J. Cataract Refract. Surg.28(1), 186–188 (2002).
[CrossRef] [PubMed]

Simavli, H.

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

Simsek, S.

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

Stubbe, K.

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
[CrossRef] [PubMed]

Tanaka, S.

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Tokunaga, T.

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Torres, I. M.

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg.31(1), 39–47 (2005).
[CrossRef] [PubMed]

Tumbar, R.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

Venter, J. A.

S. C. Schallhorn and J. A. Venter, “One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg.25(7Suppl), S634–S641 (2009).
[PubMed]

Verma, S.

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Vidal, C.

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
[CrossRef] [PubMed]

Vinciguerra, P.

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg.31(1), 39–47 (2005).
[CrossRef] [PubMed]

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

Viswanathan, D.

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
[CrossRef] [PubMed]

Wang, H.

K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
[PubMed]

Wang, L.

L. Wang and D. D. Koch, “Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract Refract. Surg.34(12), 2057–2062 (2008).
[CrossRef] [PubMed]

Wang, Q.

L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
[PubMed]

Wang, Y.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
[PubMed]

Williams, D. R.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A18(5), 1003–1015 (2001).
[CrossRef] [PubMed]

Wolfing, J.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

Wu, F.

F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom.92(3), 320–327 (2009).
[CrossRef] [PubMed]

Wu, L.

L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
[PubMed]

Xingdao, H.

Yang, Y.

F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom.92(3), 320–327 (2009).
[CrossRef] [PubMed]

Yoon, G.

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng.12, 406–410 (2004).

Zhao, K.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
[PubMed]

Zhao, K. X.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

Zhou, X.

L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
[PubMed]

Zuo, T.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
[PubMed]

Am. J. Ophthalmol. (1)

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, and M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol.127(1), 1–7 (1999).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol.119(8), 1159–1164 (2001).
[PubMed]

Br. J. Ophthalmol. (1)

M. C. Corbett, S. Verma, D. P. O’Brart, K. M. Oliver, G. Heacock, and J. Marshall, “Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy,” Br. J. Ophthalmol.80(3), 224–234 (1996).
[CrossRef] [PubMed]

Chin. Med. J. (Engl.) (1)

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl.)120(4), 269–273 (2007).
[PubMed]

Clin. Exp. Optom. (1)

F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom.92(3), 320–327 (2009).
[CrossRef] [PubMed]

Eur. J. Ophthalmol. (1)

L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol.19(6), 923–929 (2009).
[PubMed]

Eye (Lond.) (1)

Y. Kwon and S. Bott, “Postsurgery corneal asphericity and spherical aberration due to ablation efficiency reduction and corneal remodelling in refractive surgeries,” Eye (Lond.)23(9), 1845–1850 (2009).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

T. Oshika, T. Tokunaga, T. Samejima, K. Miyata, K. Kawana, and Y. Kaji, “Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis,” Invest. Ophthalmol. Vis. Sci.47(4), 1334–1338 (2006).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (11)

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg.27(3), 362–369 (2001).
[CrossRef] [PubMed]

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg.31(1), 39–47 (2005).
[CrossRef] [PubMed]

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg.36(10), 1718–1723 (2010).
[CrossRef] [PubMed]

D. H. Lee, S. J. Seo, and S. C. Shin, “Topography-guided excimer laser ablation of irregular cornea resulting from penetrating injury,” J. Cataract Refract. Surg.28(1), 186–188 (2002).
[CrossRef] [PubMed]

J. Bühren, C. Kühne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg.31(12), 2272–2280 (2005).
[CrossRef] [PubMed]

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg.35(4), 695–702 (2009).
[CrossRef] [PubMed]

L. Wang and D. D. Koch, “Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract Refract. Surg.34(12), 2057–2062 (2008).
[CrossRef] [PubMed]

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. Macrae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg.32(1), 21–32 (2006).
[CrossRef] [PubMed]

N. Kanjani, S. Ferc, Jacob, A. Ferc, Agarwal, A. Frco, Agarwal, S. Frsh, Agarwal, Fsvh, T. Frsh, A. Agarwal, Doshi, and S. Doshi, “Wavefront- and topography-guided ablation in myopic eyes using Zyoptix,” J. Cataract Refract. Surg.30(2), 398–402 (2004).
[CrossRef] [PubMed]

S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg.25(9), 1191–1197 (1999).
[CrossRef] [PubMed]

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg.30(11), 2336–2343 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (5)

J. Refract. Surg. (10)

S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg.26(10), 731–743 (2010).
[CrossRef] [PubMed]

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. De Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract. Surg.14(2Suppl), S199–S203 (1998).
[PubMed]

K. G. Falavarjani, M. Hashemi, M. Modarres, M. S. Sanjari, N. Darvish, and A. Gordiz, “Topography-guided vs wavefront-optimized surface ablation for myopia using the wavelight platform: a contralateral eye study,” J. Refract. Surg.27(1), 13–17 (2011).
[CrossRef] [PubMed]

S. C. Schallhorn and J. A. Venter, “One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg.25(7Suppl), S634–S641 (2009).
[PubMed]

M. A. el Danasoury, “Prospective bilateral study of night glare after laser in situ keratomileusis with single zone and transition zone ablation,” J. Refract. Surg.14(5), 512–516 (1998).
[PubMed]

K. Zhao, Y. Wang, T. Zuo, and H. Wang, “Multizone and transition zone photorefractive keratectomy for high myopia,” J. Refract. Surg.14(2Suppl), S222–S225 (1998).
[PubMed]

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. A. Mosquera, “LASIK for myopia with Aspheric “aberration neutral” ablations using the ESIRIS laser system,” J. Refract. Surg.25(11), 991–999 (2009).
[CrossRef] [PubMed]

T. Gamaly, “LASIK with the optimized aspheric transition zone and cross-cylinder technique for the treatment of astigmatism from 1.00 to 4.25 diopters,” J. Refract. Surg.25(10Suppl), S927–S930 (2009).
[CrossRef] [PubMed]

R. Kosaki, N. Maeda, H. Hayashi, T. Fujikado, and S. Okamoto, “Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia,” J. Refract. Surg.25(4), 331–338 (2009).
[CrossRef] [PubMed]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg.19(2Suppl), S270–S274 (2003).
[PubMed]

Ophthalmic Surg. Lasers Imaging (1)

H. B. Cakmak, N. Cagil, H. Simavli, S. Serefli, and S. Simsek, “Causes of decentration after laser-assisted subepithelial keratectomy,” Ophthalmic Surg. Lasers Imaging41(5), 499–506 (2010).
[CrossRef] [PubMed]

Ophthalmology (1)

T. Oshika, K. Miyata, T. Tokunaga, T. Samejima, S. Amano, S. Tanaka, Y. Hirohara, T. Mihashi, N. Maeda, and T. Fujikado, “Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis,” Ophthalmology109(6), 1154–1158 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Precision Eng. (1)

Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng.12, 406–410 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Frequency distributions (OD = right eyes; OS = left eyes). A represents the spherical power of refractive error determined by the subjective refraction. B represents the astigmatism determined subjectively. N = 112 eyes.

Fig. 2
Fig. 2

Transverse translation (centration error) in 112 eyes (OD = right eyes; OS = left eyes).

Fig. 3
Fig. 3

Statistical summaries of Zernike coefficients for 56 subjects. The panel A corresponds to the OD (right eyes) and the panel B corresponds to OS (left eyes). Mean values of signed aberration coefficients are indicated by squares for all eyes, with error bars indicating 56 standard deviations of the population. All aberration coefficients are in micrometers. Pupil diameter is 6 mm.

Fig. 4
Fig. 4

The residual aberrations from the customized correction with transition zone versus pupil diameter. The panel A corresponds to the left eyes (OS) and the panel B corresponds to the right eyes (OD). The residual aberration coefficients include the lower-, higher-, 2nd, 3rd, 4th, 5th and 6th order aberrations. The diameter of optical zone is 6mm. The blend coefficient is 0.35 and the diameter of ablation zone is up to 8.1mm.

Fig. 5
Fig. 5

The residual aberrations from the customized correction with transition zone versus optical zone diameter. The panel A corresponds to the left eyes (OS) and the panel B corresponds to the right eyes (OD). The residual aberration coefficients include the higher-, 3rd, 4th, 5th, 6th and 7th order aberrations. The diameter of the optical zone is from 4.68mm to 6.48mm. The corresponding blend coefficient is from 0.25 to 0.731. In addition, the diameter of ablation zone is 8.1mm.

Fig. 6
Fig. 6

The residual aberrations from the customized correction without treatment decentration versus pupil diameter. The panel A corresponds to the left eyes (OS) and the panel B corresponds to the right eyes (OD). The residual aberration coefficients include the lower-, higher-, 2nd, 3rd, 4th, 5th and 6th order aberrations. The diameter of optical zone is 6mm. The blend coefficient is 0.35 and the diameter of ablation zone is up to 8.1mm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D(x,y)= pandq W(x,y) /(n1)
W(x,y)= pandq c p q Z p q (x,y)
D(x,y)= D a (x,y) D b (x,y)R x 2 + y 2 R(1+ρ)
D a (x,y)=1 sin[ ( π Rρ )( x 2 + y 2 +R+2Rρ) π 2 ]+1 2
D b (x,y)=f( Rx x 2 + y 2 , Ry x 2 + y 2 )
κ= (1+ cln(cos(α)(1R)) (1+ cln(cos(α')(1R'))
x'=(xΔx)cosβ+(yΔy)sinβ y'=(yΔy)cosβ(xΔx)sinβ
W d (x,y)=kD(x,y)(n1)
W d = pandq C p q Z p q
W r (x,y)= W p (x,y)+ W d (x,y) = pandq a p q Z p q (x,y)+ pandq C p q Z p q (x,y)

Metrics