Abstract

Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
    [CrossRef]
  2. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
    [CrossRef]
  3. O. Rival and A. Morea, “Cost-efficiency of mixed 10-40-100Gb/s networks and elastic optical networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2011), paper OTuI4.
  4. A. N. Patel, P. N. Ji, J. P. Jue, and Ting Wang, “Routing, wavelength assignment, and spectrum allocation in transparent flexible optical WDM (FWDM) networks,” in Proceedings of Photonics in Switching (PS 2010), paper PDPWG1.
  5. T. Takagi, H. Hasegawa, K. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,” in Proceedings of European Conference on Optical Communication (ECOC 2011), paper Mo.2.K.3.
  6. K. Wen, Y. Yin, D. J. Geisler, S. Chang, and S. J. B. Yoo, “Dynamic on-demand lightpath provisioning using spectral defragmentation in flexible bandwidth networks,” in Proceedings of European Conference on Optical Communication (ECOC 2011), paper Mo.2.K.4.
  7. A. N. Patel, P. N. Ji, J. P. Jue, and Ting Wang, “Defragmentation of transparent flexible optical WDM (FWDM) networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2011), paper OTuI8.
  8. N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” in Proceedings of European Conference on Optical Communication (ECOC 2011), PDP paper Th.13.K.1.
  9. F. Cugini, M. Secondini, N. Sambo, G. Bottari, G. Bruno, P. Iovanna, and P. Castoldi, “Push-pull technique for defragmentation in flexible optical networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper JTh2A.40.
  10. Yu. Xiaosong, J. Zhang, Y. Zhao, T. Peng, Y. Bai, D. Wang, and X. Lin, “Spectrum compactness based defragmentation in flexible bandwidth optical networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2012), paper JTh2A.35.
  11. Y. wang, J. Zhang, Y. Zhao, J. Zhang, J. Zhao, X. Wang, and W. Gu, “Dynamic spectral defragmentation based on path connectivity in flexible bandwidth networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), paper P5.10.
  12. Y. Sone, A. Hirano, A. Kadohata, M. Jinno, and O. Ishida, “Routing and spectrum assignment algorithm maximizes spectrum utilization in optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2011), paper Mo.1.K.3.
  13. Y.-K. Huang, E. Ip, M. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Y. Aono, T. Tajima, and T. Wang, “10X456-Gb/s DP-16QAM transmission over 8X100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” in Proceedings of OptoElectronics Communication Conference (OECC 2010), paper PD3.
  14. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
    [CrossRef]

2010

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
[CrossRef]

2009

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Essiambre, R.-J.

Foschini, G. J.

Goebel, B.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Kramer, G.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Winzer, P. J.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

IEEE Commun. Mag.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

J. Lightwave Technol.

Other

O. Rival and A. Morea, “Cost-efficiency of mixed 10-40-100Gb/s networks and elastic optical networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2011), paper OTuI4.

A. N. Patel, P. N. Ji, J. P. Jue, and Ting Wang, “Routing, wavelength assignment, and spectrum allocation in transparent flexible optical WDM (FWDM) networks,” in Proceedings of Photonics in Switching (PS 2010), paper PDPWG1.

T. Takagi, H. Hasegawa, K. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,” in Proceedings of European Conference on Optical Communication (ECOC 2011), paper Mo.2.K.3.

K. Wen, Y. Yin, D. J. Geisler, S. Chang, and S. J. B. Yoo, “Dynamic on-demand lightpath provisioning using spectral defragmentation in flexible bandwidth networks,” in Proceedings of European Conference on Optical Communication (ECOC 2011), paper Mo.2.K.4.

A. N. Patel, P. N. Ji, J. P. Jue, and Ting Wang, “Defragmentation of transparent flexible optical WDM (FWDM) networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2011), paper OTuI8.

N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” in Proceedings of European Conference on Optical Communication (ECOC 2011), PDP paper Th.13.K.1.

F. Cugini, M. Secondini, N. Sambo, G. Bottari, G. Bruno, P. Iovanna, and P. Castoldi, “Push-pull technique for defragmentation in flexible optical networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper JTh2A.40.

Yu. Xiaosong, J. Zhang, Y. Zhao, T. Peng, Y. Bai, D. Wang, and X. Lin, “Spectrum compactness based defragmentation in flexible bandwidth optical networks,” in Proceedings of Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference (OFC/NFOEC 2012), paper JTh2A.35.

Y. wang, J. Zhang, Y. Zhao, J. Zhang, J. Zhao, X. Wang, and W. Gu, “Dynamic spectral defragmentation based on path connectivity in flexible bandwidth networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), paper P5.10.

Y. Sone, A. Hirano, A. Kadohata, M. Jinno, and O. Ishida, “Routing and spectrum assignment algorithm maximizes spectrum utilization in optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2011), paper Mo.1.K.3.

Y.-K. Huang, E. Ip, M. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Y. Aono, T. Tajima, and T. Wang, “10X456-Gb/s DP-16QAM transmission over 8X100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” in Proceedings of OptoElectronics Communication Conference (OECC 2010), paper PD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example of Node spectral-X Eigenvector calculation. (a) A given node k. (b) Spectrum occupation status of L1, L2 and L3. (c) Numbers of link pairs via node k on every FS. (d) Average bandwidth of each possible accommodation state for the 7-th FS.

Fig. 2
Fig. 2

Conceptualized illustration of Path Connectivity in flexible bandwidth optical networks.

Fig. 3
Fig. 3

Flowchart of MPC defragmentation algorithm.

Fig. 4
Fig. 4

Flowchart of PCT defragmentation algorithm.

Fig. 5
Fig. 5

Network topologies in simulation. (a) NSFNet topology, node = 14, link = 21. (b) ARPA-2 topology, node = 21, link = 26.

Fig. 6
Fig. 6

Comparisons on blocking probability among different strategies in (a) NSFNet and (b) ARPA-2.

Fig. 7
Fig. 7

Comparisons on resource occupation rate among different strategies in (a) NSFNet and (b) ARPA-2.

Fig. 8
Fig. 8

Comparisons on defragmentation profitability between MPC and PCT strategies in (a) NSFNet and (b) ARPA-2.

Tables (1)

Tables Icon

Table 1 Comparisons on disruption numbers between MPC and TPC strategies

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

FS: F S 1 F S 2 ..... F S i .... F S F D( k ) U k =[ O 1,1 O 1,2 ... O 1,i ... O 1,F O 2,1 O 2,2 ... O 2,i ... O 2,F ... ... ... ... ... ... O n k ,1 O n k ,2 ... O n k ,i ... O n k ,F ] D 1 ( k ) D 2 ( k ) ... D n k ( k )
r i ( k ) = C a i 2 = a i ( a i 1 )/2= 1 2 ( m=1 n k O m,i ) 2 1 2 m=1 n k O m,i
b i ( k ) = j=1 n i ( k ) b j / n i ( k )
e k =[ b 1 ( k ) r 1 ( k ) b 2 ( k ) r 2 ( k ) ... b i ( k ) r i ( k ) ... b F ( k ) r F ( k ) ]
b k =[ b 1 ( k ) , b 2 ( k ) ,..., b i ( k ) ,..., b F ( k ) ]=[0,1.25,1.5,1,0,1.714,2,2,0,0,1.25,1.5]
e k = r k b k = [ r 1 ( k ) b 1 ( k ) , r 2 ( k ) b 2 ( k ) ,..., r i ( k ) b i ( k ) ,..., r F ( k ) b F ( k ) ] =[ 0,3×1.25,1×1.5,1×1,0,3×1.714,3×2,1×2,0,0,3×1.25,1×1.5 ] =[ 0,3.75,1.5,1,0,5.142,6,2,0,0,3.75,1.5 ]
μ p = 1 m i=1 m e k m = [ 1 m i=1 m r 1 ( k i ) b 1 ( k i ) ... 1 m i=1 m r j ( k i ) b j ( k i ) ... 1 m i=1 m r F ( k i ) b F ( k i ) ]
d( k i )= e k i μ p 2 = j=1 F ( r j ( k i ) b j ( k i ) 1 m s=1 m r i ( k s ) b i ( k s ) ) 2 2
e a μ p 2 = max j { e j μ p 2 }
e b μ p 2 = min j { e j μ p 2 }
C p = cov( e a e b )E( e a )E( e b ) E( e a 2 ) [ E( e a ) ] 2 E( e b 2 ) [ E( e b ) ] 2

Metrics