Abstract

As the improvement of radar systems claims for digital approaches, photonics is becoming a solution for software defined high frequency and high stability signal generation. We report on our recent activities on the photonic generation of flexible wideband RF signals, extending the proposed architecture to the independent optical beamforming of multiple signals. The scheme has been tested generating two wideband signals at 10GHz and 40GHz, and controlling their independent delays at two antenna elements. Thanks to the multiple functionalities, the proposed scheme allows to improve the effectiveness of the photonic approach, reducing its cost and allowing flexibility, extremely wide bandwidth, and high stability.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Skolnik, Introduction to Radar Systems, 2nd Ed. (McGraw-Hill, 1980).
  2. V. Ravenni, “Performance evaluations of frequency diversity radar system,” Proceedings of European Microwave Conference 2007, 1715–1718 (2007).
  3. J. J. Zhang and A. Papandreou-Suppappola, “MIMO radar with frequency diversity,” Proceedings of Waveform Diversity and Design Conference 2009, 208–212 (2009).
    [CrossRef]
  4. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
    [CrossRef]
  5. L. Goldberg, R. D. Esman, and K. J. Williams, “Generation and control of microwave signals by optical techniques,” IEE Proc.-J. 139(4), 288–295 (1992).
    [CrossRef]
  6. G. Serafino, P. Ghelfi, G. E. Villanueva, J. Palaci, P. Pérez-Millán, J. L. Cruz, and A. Bogoni, “Phase and amplitude stability of EHF-band radar carriers generated from an active mode-locked laser,” J. Lightwave Technol.29(23), 3551–3559 (2011).
    [CrossRef]
  7. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
    [CrossRef]
  8. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Co.15(4), 226–228 (2005).
    [CrossRef]
  9. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
    [CrossRef]
  10. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
    [CrossRef]
  11. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
    [CrossRef]
  12. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
    [CrossRef]
  13. P. Ghelfi and A. Bogoni, “Design of flexible photonics-based RF transmitter and receiver for future mobile networks,” Proceedings of CODEC 2012, Kolkata (2012).
    [CrossRef]
  14. A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng.31(11), 2312–2322 (1992).
    [CrossRef]
  15. J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
    [CrossRef]
  16. L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
    [CrossRef]
  17. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
    [CrossRef]
  18. B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

2012 (2)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
[CrossRef]

2011 (2)

G. Serafino, P. Ghelfi, G. E. Villanueva, J. Palaci, P. Pérez-Millán, J. L. Cruz, and A. Bogoni, “Phase and amplitude stability of EHF-band radar carriers generated from an active mode-locked laser,” J. Lightwave Technol.29(23), 3551–3559 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

2010 (1)

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

2007 (1)

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
[CrossRef]

2006 (1)

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

2005 (1)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Co.15(4), 226–228 (2005).
[CrossRef]

2003 (1)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

2002 (1)

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

1997 (1)

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

1992 (1)

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng.31(11), 2312–2322 (1992).
[CrossRef]

Abeles, J. H.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

Bogoni, A.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
[CrossRef]

G. Serafino, P. Ghelfi, G. E. Villanueva, J. Palaci, P. Pérez-Millán, J. L. Cruz, and A. Bogoni, “Phase and amplitude stability of EHF-band radar carriers generated from an active mode-locked laser,” J. Lightwave Technol.29(23), 3551–3559 (2011).
[CrossRef]

P. Ghelfi and A. Bogoni, “Design of flexible photonics-based RF transmitter and receiver for future mobile networks,” Proceedings of CODEC 2012, Kolkata (2012).
[CrossRef]

Chen, X.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Cole, M. J.

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

Corral, J. L.

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

Cruz, J. L.

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng.31(11), 2312–2322 (1992).
[CrossRef]

Delfyett, P. J.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

DePriest, C. M.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

Eyal, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
[CrossRef]

Fuster, J. M.

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

Ghelfi, P.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
[CrossRef]

G. Serafino, P. Ghelfi, G. E. Villanueva, J. Palaci, P. Pérez-Millán, J. L. Cruz, and A. Bogoni, “Phase and amplitude stability of EHF-band radar carriers generated from an active mode-locked laser,” J. Lightwave Technol.29(23), 3551–3559 (2011).
[CrossRef]

P. Ghelfi and A. Bogoni, “Design of flexible photonics-based RF transmitter and receiver for future mobile networks,” Proceedings of CODEC 2012, Kolkata (2012).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng.31(11), 2312–2322 (1992).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Herrera, J.

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Laghezza, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
[CrossRef]

Laming, R.

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

Li, W.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Co.15(4), 226–228 (2005).
[CrossRef]

Martì, J.

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Co.15(4), 226–228 (2005).
[CrossRef]

Palaci, J.

Papandreou-Suppappola, A.

J. J. Zhang and A. Papandreou-Suppappola, “MIMO radar with frequency diversity,” Proceedings of Waveform Diversity and Design Conference 2009, 208–212 (2009).
[CrossRef]

Pérez-Millán, P.

Piqueras, M. A.

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

Polo, V.

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

Ravenni, V.

V. Ravenni, “Performance evaluations of frequency diversity radar system,” Proceedings of European Microwave Conference 2007, 1715–1718 (2007).

Raz, O.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
[CrossRef]

Regidor, S.

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

Rotman, R.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

Scotti, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012).
[CrossRef]

Serafino, G.

Sun, J.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

Tur, M.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
[CrossRef]

Turpin, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

Vidal, B.

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

Villanueva, G. E.

Weiner, A. M.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Co.15(4), 226–228 (2005).
[CrossRef]

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

Yao, J.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Yaron, L.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

Yilmaz, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

Zach, S.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

Zadok, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
[CrossRef]

Zhang, J. J.

J. J. Zhang and A. Papandreou-Suppappola, “MIMO radar with frequency diversity,” Proceedings of Waveform Diversity and Design Conference 2009, 208–212 (2009).
[CrossRef]

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng.31(11), 2312–2322 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron.48(9), 1151–1157 (2012).
[CrossRef]

IEEE Microw. Wirel. Co. (1)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveform applicable to ultra-wideband communication,” IEEE Microw. Wirel. Co.15(4), 226–228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011).
[CrossRef]

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18(24), 2587–2589 (2006).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic beamformer receiver with multiple beam capabilities,” IEEE Photon. Technol. Lett.22(23), 1723–1725 (2010).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett.19(7), 462–464 (2007).
[CrossRef]

IEEE Trans. Microw. Theory (1)

J. L. Corral, J. Martì, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole, “Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings,” IEEE Trans. Microw. Theory45(8), 1531–1536 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Eng. (1)

A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng.31(11), 2312–2322 (1992).
[CrossRef]

Other (6)

B. Vidal, M. A. Piqueras, J. Herrera, V. Polo, J. L. Corral, and J. Martì, “Experimental demonstration of a 3-bit phtonic beamformer at the mm-band in transmission and receiving modes,” Proceedings of Microwave Photonics Conference 2004, WD-3 (2004).

L. Goldberg, R. D. Esman, and K. J. Williams, “Generation and control of microwave signals by optical techniques,” IEE Proc.-J. 139(4), 288–295 (1992).
[CrossRef]

M. L. Skolnik, Introduction to Radar Systems, 2nd Ed. (McGraw-Hill, 1980).

V. Ravenni, “Performance evaluations of frequency diversity radar system,” Proceedings of European Microwave Conference 2007, 1715–1718 (2007).

J. J. Zhang and A. Papandreou-Suppappola, “MIMO radar with frequency diversity,” Proceedings of Waveform Diversity and Design Conference 2009, 208–212 (2009).
[CrossRef]

P. Ghelfi and A. Bogoni, “Design of flexible photonics-based RF transmitter and receiver for future mobile networks,” Proceedings of CODEC 2012, Kolkata (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photonic generation of RF signals by modulating a MLL at intermediate frequency fI.

Fig. 2
Fig. 2

Frequency and amplitude transients of linearly chirped signals. a) Signal generated at 9.95GHz. b) Signal generated at 39.8GHz.

Fig. 3
Fig. 3

a) Scheme of principle of the proposed beamforming technique. b) optical/electrical spectrum content in different position of the scheme.

Fig. 4
Fig. 4

a) Experimental setup used to demonstrate the broadband TTD beamforming. b) Experimental setup used to emulate a multi-element antenna.

Fig. 5
Fig. 5

a) The spectra filtered from the MLL by the WS at the extreme positions of the tuned range. b) Measured delay for different carrier frequencies versus the filter offset.

Fig. 6
Fig. 6

a) Filtered optical spectra in Port A. b) Filtered optical spectra in Port B. c) Related traces at 10GHz. d) Related traces at 40GHz.

Metrics