Abstract

Microwave photonics (MWP) is an emerging filed in which photonic technologies are employed to enable and enhance functionalities in microwave systems which are usually very challenging to fulfill directly in the microwave domain. Various photonic devices have been used to achieve the functions. A fiber Bragg grating (FBG) is one of the key components in microwave photonics systems due to its unique features such as flexible spectral characteristics, low loss, light weight, compact footprint, and inherent compatibility with other fiber-optic devices. In this paper, we discuss the recent development in employing FBGs for various microwave photonics subsystems, with an emphasis on subsystems for microwave photonic signal processing and microwave arbitrary waveform generation. The limitations and potential solutions are also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  2. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
    [CrossRef]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
    [CrossRef]
  4. J. P. Yao, “Microwave Photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  5. J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).
  6. J. P. Yao, “A tutorial on microwave photonics - Part II,” IEEE Photon. Soc. Newsletter26(3), 5–12 (2012).
  7. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
    [CrossRef]
  8. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  9. R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).
  10. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
    [CrossRef]
  11. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol.8(4), 355–375 (1997).
    [CrossRef]
  12. R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol.6(2), 91–108 (2000).
    [CrossRef]
  13. J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, M. V. Andres, and JosÉ Capmany, Daniel Pastor, Beatri, “Applications of fiber Bragg gratings to microwave photonics,” Fiber Integrated Opt.19(4), 483–494 (2000).
    [CrossRef]
  14. C. Wang and J. P. Yao, “Fiber Bragg gratings for microwave photonics applications,” in Microwave Photonics, Second Edition, C. H. Lee, ed. (CRC Press, 2013), pp. 125–174.
  15. S. Blais and J. P. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol.27(9), 1147–1154 (2009).
    [CrossRef]
  16. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  17. S. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett.18(21), 2230–2232 (2006).
    [CrossRef]
  18. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultra-Wideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
    [CrossRef]
  19. W. Li, W. Zhang, and J. P. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express20(28), 29838–29843 (2012).
    [CrossRef] [PubMed]
  20. W. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
    [CrossRef]
  21. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
    [CrossRef]
  22. W. Li and J. P. Yao, “An optically tunable frequency-multiplying optoelectronic oscillator,” IEEE Photon. Technol. Lett.24(10), 812–814 (2012).
    [CrossRef]
  23. J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun.284(15), 3723–3736 (2011).
    [CrossRef]
  24. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  25. D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett.6(2), 103–105 (1996).
    [CrossRef]
  26. X. K. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol.24(12), 4959–4965 (2006).
    [CrossRef]
  27. J. Mora, M. V. Andrés, J. L. Cruz, B. Ortega, J. Capmany, D. Pastor, and S. Sales, “Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings,” Opt. Lett.28(15), 1308–1310 (2003).
    [CrossRef] [PubMed]
  28. F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30(17), 2203–2205 (2005).
    [CrossRef] [PubMed]
  29. Y. Yan, S. Blais, and J. P. Yao, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol.25(11), 3283–3288 (2007).
    [CrossRef]
  30. T. Chen, X. Yi, T. Huang, and R. A. Minasian, “Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter,” Opt. Lett.35(23), 3934–3936 (2010).
    [CrossRef] [PubMed]
  31. S. R. Blals and J. P. Yao, “Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps,” IEEE Photon. Technol. Lett.20(3), 199–201 (2008).
    [CrossRef]
  32. F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
    [CrossRef]
  33. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
    [CrossRef]
  34. Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
    [CrossRef]
  35. Y. Dai and J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express16(7), 4713–4718 (2008).
    [CrossRef] [PubMed]
  36. Y. Dai and J. P. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
    [CrossRef]
  37. C. Wang and J. P. Yao, “A nonuniformly spaced microwave photonic filter using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.submitted.
  38. C. Wang and J. P. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
    [CrossRef]
  39. Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
    [CrossRef]
  40. H. Shahoei and J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012).
    [CrossRef] [PubMed]
  41. H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol.29(10), 1465–1472 (2011).
    [CrossRef]
  42. H. Shahoei and J. P. Yao, “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21(6), 7521–7527 (2013).
    [CrossRef] [PubMed]
  43. W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
    [CrossRef]
  44. M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(20), 1439–1441 (2011).
    [CrossRef]
  45. Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
    [CrossRef]
  46. M. Li and J. P. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35(2), 223–225 (2010).
    [CrossRef] [PubMed]
  47. M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009).
    [CrossRef] [PubMed]
  48. M. Li and J. P. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightwave Technol.29(17), 2506–2511 (2011).
    [CrossRef]
  49. M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
    [CrossRef]
  50. H. Shahoei, J. Albert, and J. P. Yao, “Optically tunable fractional order temporal differentiator using an optically pumped tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.24(9), 370–372 (2012).
    [CrossRef]
  51. M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett.35(8), 1191–1193 (2010).
    [CrossRef] [PubMed]
  52. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999).
    [CrossRef] [PubMed]
  53. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
    [CrossRef]
  54. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
    [CrossRef]
  55. C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
    [CrossRef]
  56. J. P. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
    [CrossRef]
  57. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
    [CrossRef]
  58. C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
    [CrossRef]
  59. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
    [CrossRef]
  60. C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
    [CrossRef]
  61. C. Wang and J. P. Yao, “Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation,” IEEE Photon. Technol. Lett.21(12), 793–795 (2009).
    [CrossRef]
  62. C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
    [CrossRef]
  63. C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.24(17), 1493–1495 (2012).
    [CrossRef]
  64. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B5(8), 1563–1572 (1988).
    [CrossRef]
  65. C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.21(19), 1375–1377 (2009).
    [CrossRef]
  66. J. P. Heritage and A. M. Weiner, “Optical systems and methods based upon temporal stretching, modulation and recompression of ultrashort pulses,” United States Patent 4928316, 1990.
  67. H. Chi and J. P. Yao, “Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator,” Electron. Lett.43(7), 415–417 (2007).
    [CrossRef]
  68. M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
    [CrossRef]
  69. C. Wang, M. Li, and J. P. Yao, “Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system,” IEEE Photon. Technol. Lett.22(17), 1285–1287 (2010).
    [CrossRef]
  70. M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
    [CrossRef]
  71. H. Shahoei and J. P. Yao, “Continuously tunable microwave frequency multiplication by optically pumping linearly chirped fiber Bragg gratings in an unbalanced temporal pulse shaping system,” J. Lightwave Technol.30(12), 1954–1959 (2012).
    [CrossRef]
  72. Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett.14(8), 1172–1174 (2002).
    [CrossRef]
  73. K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
    [CrossRef]
  74. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
    [CrossRef]
  75. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett.34(24), 3794–3796 (2009).
    [CrossRef] [PubMed]
  76. L. E. Adams, H. Mavoori, S. Jin, and R. P. Espindola, “Dynamic measurements of magnetically-strain tuned FBG for fast reconfigurable add/drop,” in Proc. OFC’99, 143–145 (1999)
    [CrossRef]
  77. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
    [CrossRef]
  78. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011).
    [CrossRef] [PubMed]
  79. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20(10), 11241–11246 (2012).
    [CrossRef] [PubMed]
  80. K. A. Rutkowska, D. Duchesne, M. J. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19(20), 19514–19522 (2011).
    [CrossRef] [PubMed]

2013 (2)

H. Shahoei and J. P. Yao, “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21(6), 7521–7527 (2013).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

2012 (10)

H. Shahoei and J. P. Yao, “Continuously tunable microwave frequency multiplication by optically pumping linearly chirped fiber Bragg gratings in an unbalanced temporal pulse shaping system,” J. Lightwave Technol.30(12), 1954–1959 (2012).
[CrossRef]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.24(17), 1493–1495 (2012).
[CrossRef]

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

H. Shahoei and J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012).
[CrossRef] [PubMed]

H. Shahoei, J. Albert, and J. P. Yao, “Optically tunable fractional order temporal differentiator using an optically pumped tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.24(9), 370–372 (2012).
[CrossRef]

J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).

J. P. Yao, “A tutorial on microwave photonics - Part II,” IEEE Photon. Soc. Newsletter26(3), 5–12 (2012).

W. Li, W. Zhang, and J. P. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express20(28), 29838–29843 (2012).
[CrossRef] [PubMed]

W. Li and J. P. Yao, “An optically tunable frequency-multiplying optoelectronic oscillator,” IEEE Photon. Technol. Lett.24(10), 812–814 (2012).
[CrossRef]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20(10), 11241–11246 (2012).
[CrossRef] [PubMed]

2011 (11)

K. A. Rutkowska, D. Duchesne, M. J. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19(20), 19514–19522 (2011).
[CrossRef] [PubMed]

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun.284(15), 3723–3736 (2011).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol.29(10), 1465–1472 (2011).
[CrossRef]

M. Li and J. P. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightwave Technol.29(17), 2506–2511 (2011).
[CrossRef]

M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
[CrossRef]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(20), 1439–1441 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
[CrossRef]

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011).
[CrossRef] [PubMed]

2010 (8)

C. Wang, M. Li, and J. P. Yao, “Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system,” IEEE Photon. Technol. Lett.22(17), 1285–1287 (2010).
[CrossRef]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

M. Li and J. P. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35(2), 223–225 (2010).
[CrossRef] [PubMed]

M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett.35(8), 1191–1193 (2010).
[CrossRef] [PubMed]

W. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

T. Chen, X. Yi, T. Huang, and R. A. Minasian, “Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter,” Opt. Lett.35(23), 3934–3936 (2010).
[CrossRef] [PubMed]

Y. Dai and J. P. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

2009 (10)

C. Wang and J. P. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

S. Blais and J. P. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol.27(9), 1147–1154 (2009).
[CrossRef]

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

J. P. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009).
[CrossRef] [PubMed]

C. Wang and J. P. Yao, “Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation,” IEEE Photon. Technol. Lett.21(12), 793–795 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.21(19), 1375–1377 (2009).
[CrossRef]

P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett.34(24), 3794–3796 (2009).
[CrossRef] [PubMed]

2008 (4)

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

Y. Dai and J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express16(7), 4713–4718 (2008).
[CrossRef] [PubMed]

S. R. Blals and J. P. Yao, “Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps,” IEEE Photon. Technol. Lett.20(3), 199–201 (2008).
[CrossRef]

2007 (6)

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

Y. Yan, S. Blais, and J. P. Yao, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol.25(11), 3283–3288 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultra-Wideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

H. Chi and J. P. Yao, “Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator,” Electron. Lett.43(7), 415–417 (2007).
[CrossRef]

2006 (7)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

S. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett.18(21), 2230–2232 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

X. K. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol.24(12), 4959–4965 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

2005 (2)

F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30(17), 2203–2205 (2005).
[CrossRef] [PubMed]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

2004 (1)

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

2003 (2)

2002 (2)

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
[CrossRef]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett.14(8), 1172–1174 (2002).
[CrossRef]

2000 (2)

R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol.6(2), 91–108 (2000).
[CrossRef]

J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, M. V. Andres, and JosÉ Capmany, Daniel Pastor, Beatri, “Applications of fiber Bragg gratings to microwave photonics,” Fiber Integrated Opt.19(4), 483–494 (2000).
[CrossRef]

1999 (2)

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999).
[CrossRef] [PubMed]

1997 (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol.8(4), 355–375 (1997).
[CrossRef]

1996 (1)

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett.6(2), 103–105 (1996).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

1988 (1)

Adams, L. E.

L. E. Adams, H. Mavoori, S. Jin, and R. P. Espindola, “Dynamic measurements of magnetically-strain tuned FBG for fast reconfigurable add/drop,” in Proc. OFC’99, 143–145 (1999)
[CrossRef]

Albert, J.

H. Shahoei, J. Albert, and J. P. Yao, “Optically tunable fractional order temporal differentiator using an optically pumped tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.24(9), 370–372 (2012).
[CrossRef]

M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

Andres, M. V.

J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, M. V. Andres, and JosÉ Capmany, Daniel Pastor, Beatri, “Applications of fiber Bragg gratings to microwave photonics,” Fiber Integrated Opt.19(4), 483–494 (2000).
[CrossRef]

Andrés, M. V.

Asghari, M. H.

Azaña, J.

Baghban, M. A.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

Blais, S.

Blals, S. R.

S. R. Blals and J. P. Yao, “Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps,” IEEE Photon. Technol. Lett.20(3), 199–201 (2008).
[CrossRef]

Bruns, J.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

J. Mora, M. V. Andrés, J. L. Cruz, B. Ortega, J. Capmany, D. Pastor, and S. Sales, “Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings,” Opt. Lett.28(15), 1308–1310 (2003).
[CrossRef] [PubMed]

J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, M. V. Andres, and JosÉ Capmany, Daniel Pastor, Beatri, “Applications of fiber Bragg gratings to microwave photonics,” Fiber Integrated Opt.19(4), 483–494 (2000).
[CrossRef]

Carballar, A.

Chai, J. X.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Chen, T.

Chi, H.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

H. Chi and J. P. Yao, “Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator,” Electron. Lett.43(7), 415–417 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Cruz, J. L.

J. Mora, M. V. Andrés, J. L. Cruz, B. Ortega, J. Capmany, D. Pastor, and S. Sales, “Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings,” Opt. Lett.28(15), 1308–1310 (2003).
[CrossRef] [PubMed]

J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, M. V. Andres, and JosÉ Capmany, Daniel Pastor, Beatri, “Applications of fiber Bragg gratings to microwave photonics,” Fiber Integrated Opt.19(4), 483–494 (2000).
[CrossRef]

Dai, Y.

Y. Dai and J. P. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express16(7), 4713–4718 (2008).
[CrossRef] [PubMed]

Duchesne, D.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Espindola, R. P.

L. E. Adams, H. Mavoori, S. Jin, and R. P. Espindola, “Dynamic measurements of magnetically-strain tuned FBG for fast reconfigurable add/drop,” in Proc. OFC’99, 143–145 (1999)
[CrossRef]

Fathpour, S.

Feinberg, J.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Feng, K. M.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
[CrossRef]

Giuntoni, I.

Grubsky, V.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Han, Y. C.

M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
[CrossRef]

Hayee, M. I.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Heritage, J. P.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

Huang, T.

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett.6(2), 103–105 (1996).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

Janner, D.

Jiang, X.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Jin, S.

L. E. Adams, H. Mavoori, S. Jin, and R. P. Espindola, “Dynamic measurements of magnetically-strain tuned FBG for fast reconfigurable add/drop,” in Proc. OFC’99, 143–145 (1999)
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

Khan, S.

Kirschner, E. M.

Kroushkov, D. I.

Kubota, F.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

Lee, S.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Li, M.

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol.29(10), 1465–1472 (2011).
[CrossRef]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(20), 1439–1441 (2011).
[CrossRef]

M. Li and J. P. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightwave Technol.29(17), 2506–2511 (2011).
[CrossRef]

M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
[CrossRef]

C. Wang, M. Li, and J. P. Yao, “Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system,” IEEE Photon. Technol. Lett.22(17), 1285–1287 (2010).
[CrossRef]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
[CrossRef]

M. Li and J. P. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35(2), 223–225 (2010).
[CrossRef] [PubMed]

M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009).
[CrossRef] [PubMed]

Li, W.

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

W. Li and J. P. Yao, “An optically tunable frequency-multiplying optoelectronic oscillator,” IEEE Photon. Technol. Lett.24(10), 812–814 (2012).
[CrossRef]

W. Li, W. Zhang, and J. P. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express20(28), 29838–29843 (2012).
[CrossRef] [PubMed]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

W. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
[CrossRef]

Li, Z.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

Liu, Y. Q.

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett.14(8), 1172–1174 (2002).
[CrossRef]

Loayssa, A.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

Margulis, W.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Matsumoto, S.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

Mavoori, H.

L. E. Adams, H. Mavoori, S. Jin, and R. P. Espindola, “Dynamic measurements of magnetically-strain tuned FBG for fast reconfigurable add/drop,” in Proc. OFC’99, 143–145 (1999)
[CrossRef]

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

Minasian, R. A.

T. Chen, X. Yi, T. Huang, and R. A. Minasian, “Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter,” Opt. Lett.35(23), 3934–3936 (2010).
[CrossRef] [PubMed]

X. K. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol.24(12), 4959–4965 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol.6(2), 91–108 (2000).
[CrossRef]

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett.6(2), 103–105 (1996).
[CrossRef]

Miyazaki, T.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

J. Mora, M. V. Andrés, J. L. Cruz, B. Ortega, J. Capmany, D. Pastor, and S. Sales, “Tunable all-optical negative multitap microwave filters based on uniform fiber Bragg gratings,” Opt. Lett.28(15), 1308–1310 (2003).
[CrossRef] [PubMed]

Morandotti, R.

Muriel, M. A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

Pan, S. L.

M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
[CrossRef]

Pastor, D.

Petermann, K.

Pruneri, V.

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol.8(4), 355–375 (1997).
[CrossRef]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Rugeland, P.

Rutkowska, K. A.

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Sales, S.

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
[CrossRef]

Shahoei, H.

Shao, L.

M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
[CrossRef]

Sorel, M.

Starodubov, D. S.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Sterner, C.

Stolarek, D.

Strain, M. J.

Sugihara, T.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

Takabayashi, M.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

Tarasenko, O.

Tengstrand, G.

Tillack, B.

Wang, C.

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.24(17), 1493–1495 (2012).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett.35(8), 1191–1193 (2010).
[CrossRef] [PubMed]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
[CrossRef]

C. Wang, M. Li, and J. P. Yao, “Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system,” IEEE Photon. Technol. Lett.22(17), 1285–1287 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.21(19), 1375–1377 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation,” IEEE Photon. Technol. Lett.21(12), 793–795 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

C. Wang and J. P. Yao, “A nonuniformly spaced microwave photonic filter using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.submitted.

Wang, J.

Wang, Q.

Weiner, A. M.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B5(8), 1563–1572 (1988).
[CrossRef]

Williams, K. J.

Willner, A. E.

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

Yan, Y.

Y. Yan, S. Blais, and J. P. Yao, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol.25(11), 3283–3288 (2007).
[CrossRef]

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

Yang, J. L.

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett.14(8), 1172–1174 (2002).
[CrossRef]

Yao, J.

Yao, J. P.

H. Shahoei and J. P. Yao, “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21(6), 7521–7527 (2013).
[CrossRef] [PubMed]

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

H. Shahoei and J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012).
[CrossRef] [PubMed]

H. Shahoei, J. Albert, and J. P. Yao, “Optically tunable fractional order temporal differentiator using an optically pumped tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.24(9), 370–372 (2012).
[CrossRef]

W. Li and J. P. Yao, “An optically tunable frequency-multiplying optoelectronic oscillator,” IEEE Photon. Technol. Lett.24(10), 812–814 (2012).
[CrossRef]

J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).

J. P. Yao, “A tutorial on microwave photonics - Part II,” IEEE Photon. Soc. Newsletter26(3), 5–12 (2012).

W. Li, W. Zhang, and J. P. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express20(28), 29838–29843 (2012).
[CrossRef] [PubMed]

H. Shahoei and J. P. Yao, “Continuously tunable microwave frequency multiplication by optically pumping linearly chirped fiber Bragg gratings in an unbalanced temporal pulse shaping system,” J. Lightwave Technol.30(12), 1954–1959 (2012).
[CrossRef]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.24(17), 1493–1495 (2012).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
[CrossRef]

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun.284(15), 3723–3736 (2011).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
[CrossRef]

M. Li and J. P. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightwave Technol.29(17), 2506–2511 (2011).
[CrossRef]

H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol.29(10), 1465–1472 (2011).
[CrossRef]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(20), 1439–1441 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

Y. Dai and J. P. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

M. Li and J. P. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35(2), 223–225 (2010).
[CrossRef] [PubMed]

W. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
[CrossRef]

C. Wang, M. Li, and J. P. Yao, “Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system,” IEEE Photon. Technol. Lett.22(17), 1285–1287 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.21(19), 1375–1377 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation,” IEEE Photon. Technol. Lett.21(12), 793–795 (2009).
[CrossRef]

J. P. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

S. Blais and J. P. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol.27(9), 1147–1154 (2009).
[CrossRef]

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009).
[CrossRef] [PubMed]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express16(7), 4713–4718 (2008).
[CrossRef] [PubMed]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

S. R. Blals and J. P. Yao, “Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps,” IEEE Photon. Technol. Lett.20(3), 199–201 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

H. Chi and J. P. Yao, “Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator,” Electron. Lett.43(7), 415–417 (2007).
[CrossRef]

Y. Yan, S. Blais, and J. P. Yao, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol.25(11), 3283–3288 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultra-Wideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

S. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett.18(21), 2230–2232 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30(17), 2203–2205 (2005).
[CrossRef] [PubMed]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett.14(8), 1172–1174 (2002).
[CrossRef]

C. Wang and J. P. Yao, “A nonuniformly spaced microwave photonic filter using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.submitted.

Yi, X.

Yi, X. K.

Yoshiara, K.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

Yu, Z.

Zeng, F.

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultra-Wideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30(17), 2203–2205 (2005).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

Zimmermann, L.

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-Fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993).
[CrossRef]

Electron. Lett. (1)

H. Chi and J. P. Yao, “Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator,” Electron. Lett.43(7), 415–417 (2007).
[CrossRef]

Fiber Integrated Opt. (1)

J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, M. V. Andres, and JosÉ Capmany, Daniel Pastor, Beatri, “Applications of fiber Bragg gratings to microwave photonics,” Fiber Integrated Opt.19(4), 483–494 (2000).
[CrossRef]

IEEE Microw. Guided Wave Lett. (1)

D. B. Hunter and R. A. Minasian, “Microwave optical filters using in-fiber Bragg grating arrays,” IEEE Microw. Guided Wave Lett.6(2), 103–105 (1996).
[CrossRef]

IEEE Microw. Mag. (1)

J. P. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (2)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett.21(1), 52–54 (2011).
[CrossRef]

IEEE Photon. Soc. Newsletter (2)

J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).

J. P. Yao, “A tutorial on microwave photonics - Part II,” IEEE Photon. Soc. Newsletter26(3), 5–12 (2012).

IEEE Photon. Technol. Lett. (23)

S. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett.18(21), 2230–2232 (2006).
[CrossRef]

W. Li and J. P. Yao, “An optically tunable frequency-multiplying optoelectronic oscillator,” IEEE Photon. Technol. Lett.24(10), 812–814 (2012).
[CrossRef]

S. R. Blals and J. P. Yao, “Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps,” IEEE Photon. Technol. Lett.20(3), 199–201 (2008).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett.19(19), 1472–1474 (2007).
[CrossRef]

C. Wang and J. P. Yao, “A nonuniformly spaced microwave photonic filter using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.submitted.

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003).
[CrossRef]

M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011).
[CrossRef]

H. Shahoei, J. Albert, and J. P. Yao, “Optically tunable fractional order temporal differentiator using an optically pumped tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.24(9), 370–372 (2012).
[CrossRef]

Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009).
[CrossRef]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(20), 1439–1441 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, “Optical single-sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photon. Technol. Lett.23(9), 558–560 (2011).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008).
[CrossRef]

C. Wang and J. P. Yao, “Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform generation,” IEEE Photon. Technol. Lett.21(12), 793–795 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveform generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.24(17), 1493–1495 (2012).
[CrossRef]

M. Li, Y. C. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photon. Technol. Lett.23(11), 715–717 (2011).
[CrossRef]

C. Wang, M. Li, and J. P. Yao, “Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system,” IEEE Photon. Technol. Lett.22(17), 1285–1287 (2010).
[CrossRef]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett.14(8), 1172–1174 (2002).
[CrossRef]

K. M. Feng, J. X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, “Dynamic dispersion compensation in a 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.11(3), 373–375 (1999).
[CrossRef]

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photon. Technol. Lett.16(4), 1095–1097 (2004).
[CrossRef]

C. Wang and J. P. Yao, “Fourier transform ultrashort optical pulse shaping using a single chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.21(19), 1375–1377 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (9)

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech.58(11), 2968–2975 (2010).
[CrossRef]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011).
[CrossRef]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008).
[CrossRef]

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response,” IEEE Trans. Microw. Theory Tech.57(2), 496–504 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Nonuniformly spaced photonic microwave delay-line filters and applications,” IEEE Trans. Microw. Theory Tech.58(11), 3279–3289 (2010).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

W. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
[CrossRef]

J. Lightwave Technol. (14)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006).
[CrossRef]

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15(8), 1391–1404 (1997).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultra-Wideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

S. Blais and J. P. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol.27(9), 1147–1154 (2009).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

Y. Yan, S. Blais, and J. P. Yao, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol.25(11), 3283–3288 (2007).
[CrossRef]

X. K. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol.24(12), 4959–4965 (2006).
[CrossRef]

H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol.29(10), 1465–1472 (2011).
[CrossRef]

M. Li and J. P. Yao, “Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating,” J. Lightwave Technol.29(17), 2506–2511 (2011).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009).
[CrossRef]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010).
[CrossRef]

H. Shahoei and J. P. Yao, “Continuously tunable microwave frequency multiplication by optically pumping linearly chirped fiber Bragg gratings in an unbalanced temporal pulse shaping system,” J. Lightwave Technol.30(12), 1954–1959 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol.8(4), 355–375 (1997).
[CrossRef]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Opt. Commun. (1)

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” Opt. Commun.284(15), 3723–3736 (2011).
[CrossRef]

Opt. Express (8)

Y. Dai and J. P. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express16(7), 4713–4718 (2008).
[CrossRef] [PubMed]

W. Li, W. Zhang, and J. P. Yao, “A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating,” Opt. Express20(28), 29838–29843 (2012).
[CrossRef] [PubMed]

H. Shahoei and J. P. Yao, “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21(6), 7521–7527 (2013).
[CrossRef] [PubMed]

H. Shahoei and J. P. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express20(13), 14009–14014 (2012).
[CrossRef] [PubMed]

M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009).
[CrossRef] [PubMed]

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011).
[CrossRef] [PubMed]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20(10), 11241–11246 (2012).
[CrossRef] [PubMed]

K. A. Rutkowska, D. Duchesne, M. J. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19(20), 19514–19522 (2011).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol.6(2), 91–108 (2000).
[CrossRef]

Opt. Lett. (7)

Other (4)

L. E. Adams, H. Mavoori, S. Jin, and R. P. Espindola, “Dynamic measurements of magnetically-strain tuned FBG for fast reconfigurable add/drop,” in Proc. OFC’99, 143–145 (1999)
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic Press, 1999).

C. Wang and J. P. Yao, “Fiber Bragg gratings for microwave photonics applications,” in Microwave Photonics, Second Edition, C. H. Lee, ed. (CRC Press, 2013), pp. 125–174.

J. P. Heritage and A. M. Weiner, “Optical systems and methods based upon temporal stretching, modulation and recompression of ultrashort pulses,” United States Patent 4928316, 1990.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram to show the structures of (a) a uniform FBG and (b) a chirped FBG. (Color is for illustration purpose only.)

Fig. 2
Fig. 2

(a) A generic microwave photonic delay-line filter with a finite impulse response (FIR). (b) The implementation of microwave a photonic delay-line filter using an incoherent broadband optical source and an FBG-array delay line. PD: photodetector.

Fig. 3
Fig. 3

(a) Microwave phase inversion based on PM-IM conversion using dispersive elements with opposite dispersion. (b) An N-tap microwave photonic delay-line filter with positive and negative coefficients based on PM-IM conversion in N chirped FBGs with positive and opposite dispersion. PD: photodetector; LCFBG: linearly chirped fiber Bragg grating.

Fig. 4
Fig. 4

Schematic diagram of a nonuniformly-spaced microwave photonic delay-line filter implemented using (a) a multi-wavelength laser source with nonuniformly spaced wavelengths, and (b) a spatially discrete chirped fiber Bragg grating (SD-CFBG).

Fig. 5
Fig. 5

Schematic diagram of a microwave photonic filter implemented based on optical filter response to microwave filter response conversion. PD: photodetector.

Fig. 6
Fig. 6

(a) Microwave photonic narrow bandpass filter using a phase modulator and a phase-shifted FBG. (b) Optical filter response to microwave filter response conversion using a PS-FBG. PS-FBG: phase-shifted fiber Bragg grating, PD: photodetector.

Fig. 7
Fig. 7

(a) Schematic diagram to show the principle of frequency-to-time mapping in a dispersive device. (b) Photonic microwave arbitrary waveform generation based on optical spectral shaping and dispersion-induced frequency-to-time mapping. (Color is for illustration purpose only.) PD: photodetector.

Fig. 8
Fig. 8

(a) An optical spectral shaper consisting of two superimposed LCFBGs with different chirp rates and a small longitudinal offset. (b) An all-fiber optical spectral shaper consisting of a Sagnac-loop mirror incorporating an LCFBG and a tunable delay line (TDL). PC: polarization controller, LCFBGs: linearly chirped fiber Bragg grating.

Fig. 9
Fig. 9

(a) Microwave arbitrary waveform generation system using a single LCFBG to perform both spectral shaping and frequency-to-time mapping. LCFBG: linearly chirped fiber Bragg grating, PD: photodetector. (b) Illustration of the design and fabrication of a spatially discrete chirped fiber Bragg grating (SD-CFBG). SD-CFBG: spatially discrete chirped fiber Bragg grating. (Color is for illustration purpose only.)

Fig. 10
Fig. 10

(a) Schematic of a TPS system for microwave arbitrary waveform generation. (b) Schematic of an unbalanced TPS system for microwave waveform generation based on frequency multiplication. TPS: temporal pulse shaping, LCFBG: linearly chirped fiber Bragg grating, PD: photodetector. (Color is for illustration purpose only.)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H( ω )= k=0 N1 α k exp( jωkT ) .
H Non ( ω ) k=0 N1 α k exp( jmΩΔ τ k )exp( jωkT ) .
E SSB ( t )= A 0 exp( j ω 0 t )+ A 1 exp[ j( ω 0 + ω RF )t ].
E OSF ( t )=| ρ( ω 0 ) | A 0 exp[ j ω 0 t+jθ( ω 0 ) ] +| ρ( ω 0 + ω RF ) | A 1 exp[ j( ω 0 + ω RF )t+jθ( ω 0 + ω RF ) ].
H OMC ( ω RF )| ρ( ω 0 ) || ρ( ω 0 + ω RF ) |exp[ jθ( ω 0 + ω RF )jθ( ω 0 ) ].
y( t )exp( j t 2 2 Φ ¨ 0 ) + g( τ )exp( j t Φ ¨ 0 τ ) dτ.
y( t )=2π| Φ ¨ 0 |exp( j t 2 2 Φ ¨ 0 )×[ s(t)X( t Φ ¨ 0 ) ].

Metrics