Abstract

A time- and wavelength-division multiplexing sensor network based on ultra-weak fiber Bragg gratings (FBGs) was proposed. The low insertion loss and the high multiplexing capability of the proposed sensor network were investigated through both theoretical analysis and experimental study. The demodulation system, which consists of two semiconductor optical amplifiers and one high-speed charge-coupled device module, was constructed to interrogate 2000 serial ultra-weak FBGs with peak reflectivity ranging from −47 dB to −51 dB and a spatial resolution of 2 m along an optical fiber. The distinct advantages of the proposed sensor network make it an excellent candidate for the large-scale sensing network.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE3897, 468–479 (1999).
    [CrossRef]
  2. C. S. Kim, T. H. Lee, Y. S. Yu, Y. G. Han, S. B. Lee, and M. Y. Jeong, “Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters,” Opt. Express14(19), 8546–8551 (2006).
    [CrossRef] [PubMed]
  3. J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE6595, 01–08 (2007).
  4. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express13(7), 2377–2384 (2005).
    [CrossRef] [PubMed]
  5. W. H. Chung and H. Y. Tam, “Time- and wavelength-division multiplexing of FBG sensors using a semi- conductor optical amplifier in ring cavity configuration,” IEEE Photon. Technol. Lett.17(12), 2709–2711 (2005).
    [CrossRef]
  6. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express16(4), 2547–2554 (2008).
    [CrossRef] [PubMed]
  7. G. D. Lloyd, L. Bennion, L. A. Everall, and K. Sugden, “Novel resonant cavity TDM demodulation scheme for FBG sensing,” in Proceedings of Lasers and Electro-Optics, San Francisco, CA, CWD4(2004).
  8. Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
    [CrossRef]
  9. C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4(2000).
  10. Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
    [CrossRef]
  11. Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large Serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol.30(17), 2751–2756 (2012).
    [CrossRef]
  12. H. Y. Guo, J. G. Tang, X. F. Li, Y. Zheng, and H. F. Yu, “On-line writing weak fiber Bragg gratings array,” Chin. Opt. Lett.11(3), 030602–030605 (2013).
    [CrossRef]
  13. A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
    [CrossRef]
  14. M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
    [CrossRef]
  15. Z. Wang, Q. Z. Sun, and M. L. Zhang, “A Distributed Sensing System Based on Low-Reflective-Index Bragg Gratings,” in Proceedings of Photonics and Optoelectronics (SOPO), Wuhan, 1-3(2011).

2013

2012

Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large Serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol.30(17), 2751–2756 (2012).
[CrossRef]

A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
[CrossRef]

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

2011

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

2009

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

2008

2007

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE6595, 01–08 (2007).

2006

2005

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express13(7), 2377–2384 (2005).
[CrossRef] [PubMed]

W. H. Chung and H. Y. Tam, “Time- and wavelength-division multiplexing of FBG sensors using a semi- conductor optical amplifier in ring cavity configuration,” IEEE Photon. Technol. Lett.17(12), 2709–2711 (2005).
[CrossRef]

1999

W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE3897, 468–479 (1999).
[CrossRef]

Asundi, A.

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

Bi, W.

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

Chan, C. C.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4(2000).

Chen, Z.

Chung, W. H.

W. H. Chung and H. Y. Tam, “Time- and wavelength-division multiplexing of FBG sensors using a semi- conductor optical amplifier in ring cavity configuration,” IEEE Photon. Technol. Lett.17(12), 2709–2711 (2005).
[CrossRef]

Dai, Y. B.

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

De Natale, P.

Demokan, M. S.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4(2000).

Deng, G.

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

Dong, B.

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

Ferraro, P.

Gagliardi, G.

Gong, J. M.

Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large Serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol.30(17), 2751–2756 (2012).
[CrossRef]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

Guo, H. Y.

Han, Y. G.

Jeon, M. Y.

Jeong, M. Y.

Jin, W.

W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE3897, 468–479 (1999).
[CrossRef]

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4(2000).

Kim, C. S.

Lee, S. B.

Lee, T. H.

Leng, J. S.

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

Li, X.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Li, X. F.

Liu, D.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Liu, H.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Liu, Y. J.

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

Miguel, G. H.

A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
[CrossRef]

Ou, J.

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE6595, 01–08 (2007).

Pedro, C.

A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
[CrossRef]

Salza, M.

Shilig, T. J.

Sonia, M. L.

A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
[CrossRef]

Sun, Q. Z.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Tam, H. Y.

W. H. Chung and H. Y. Tam, “Time- and wavelength-division multiplexing of FBG sensors using a semi- conductor optical amplifier in ring cavity configuration,” IEEE Photon. Technol. Lett.17(12), 2709–2711 (2005).
[CrossRef]

Tang, J. G.

Wang, A.

Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large Serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol.30(17), 2751–2756 (2012).
[CrossRef]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

Wang, D. J.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4(2000).

Wang, D. Y.

Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large Serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol.30(17), 2751–2756 (2012).
[CrossRef]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

Wang, Q.

Wang, Y. M.

Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large Serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol.30(17), 2751–2756 (2012).
[CrossRef]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

Wang, Z.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Xabier, A. V.

A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
[CrossRef]

Yu, H. F.

Yu, Y. S.

Zhang, J.

Zhang, M. L.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Zheng, Y.

Zhou, Z.

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE6595, 01–08 (2007).

Chin. Opt. Lett.

IEEE Photon. Technol. Lett.

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett.23(2), 70–72 (2011).
[CrossRef]

W. H. Chung and H. Y. Tam, “Time- and wavelength-division multiplexing of FBG sensors using a semi- conductor optical amplifier in ring cavity configuration,” IEEE Photon. Technol. Lett.17(12), 2709–2711 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

M. L. Zhang, Q. Z. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing,” Opt. Commun.285(13-14), 3082–3087 (2012).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

Y. B. Dai, Y. J. Liu, J. S. Leng, G. Deng, and A. Asundi, “A novel time- division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng.47(10), 1028–1033 (2009).
[CrossRef]

Proc. SPIE

W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE3897, 468–479 (1999).
[CrossRef]

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE6595, 01–08 (2007).

A. V. Xabier, M. L. Sonia, C. Pedro, and G. H. Miguel, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE8421, 842117, 842117-4 (2012).
[CrossRef]

Other

Z. Wang, Q. Z. Sun, and M. L. Zhang, “A Distributed Sensing System Based on Low-Reflective-Index Bragg Gratings,” in Proceedings of Photonics and Optoelectronics (SOPO), Wuhan, 1-3(2011).

G. D. Lloyd, L. Bennion, L. A. Everall, and K. Sugden, “Novel resonant cavity TDM demodulation scheme for FBG sensing,” in Proceedings of Lasers and Electro-Optics, San Francisco, CA, CWD4(2004).

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4(2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sensor network with an ultra-weak TDM + WDM-FBG array.

Fig. 2
Fig. 2

PSD of the light source, modulated signal, and reflected signal.

Fig. 3
Fig. 3

Reflection spectra of the first FBG detected from the two ends of the FBG array.

Fig. 4
Fig. 4

Dynamic monitoring of the deflection of the free end.

Fig. 5
Fig. 5

The peak wavelengths of 2000 serial ultra-weak FBGs measured by PC remote control.

Fig. 6
Fig. 6

Reflected spectra from 10 FBGs.

Fig. 7
Fig. 7

Temperature measurement results of the 2000-sensor array.

Fig. 8
Fig. 8

Wavelength shift versus temperature change.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ i = 2 n e L i c
( τ r + τ f )w 2 n e d c ,
P m = P 0 +10log(w/T)= P 0 +10logfw
P OSA P m + A SOA1 + A EDFA P c + P FBG + A SOA2 P other ,
T> t i =c/[2n*(i1)*d],

Metrics