Abstract

Nanoparticles of transparent conducting oxides, such as indium tin oxide, can be used in printing techniques to generate functional layers for various optoelectronic devices. Since these deposition methods do not create fully consolidated films, the optical properties of such layers are expected to be notably different from those of the bulk material and should be characterized on their own. In this work we present a way to measure the effective refractive index of a particulate ITO layer by refraction of light. The obtained data points are used to identify an accurate layer model for spectroscopic ellipsometry. In this way the complex refractive index of the particle layer is determined in a wide spectral range from ultra violet to near infrared.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Manifacier, “Thin metallic oxides as transparent conductors,” Thin Solid Films90(3), 297–308 (1982).
    [CrossRef]
  2. M. Groß, Druckbare, nanopartikuläre Indiumzinnoxidschichten für optoelektronische Anwendungen, Dissertation, Friedrich-Alexander-Universität Erlangen-Nuremberg, 2009, p.33.
  3. T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films203(2), 297–302 (1991).
    [CrossRef]
  4. J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
    [CrossRef]
  5. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
    [CrossRef]
  6. M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
    [CrossRef]
  7. M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
    [CrossRef]
  8. J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
    [CrossRef] [PubMed]
  9. S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
    [CrossRef]
  10. M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
    [CrossRef]
  11. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys.24, 636–664 (1935).
  12. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
    [CrossRef]
  13. I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).
  14. M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011).
    [CrossRef]
  15. J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
    [CrossRef]
  16. Eugene Hecht, Optics. 4th Edition (Addison Wesley Longman, Inc., USA, 2002).
  17. M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
    [CrossRef]
  18. A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007).
    [CrossRef]
  19. M. Sánchez-López, I. Moreno, and A. Martínez-García, “Teaching diffraction gratings by means of a phasor analysis,” Proc. SPIE ETOP (2009).
    [CrossRef]
  20. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
    [CrossRef]
  21. E. W. Tillotson, “The Relation of the Refractive Index of Soda Lime Glasses to Their Chemical Composition,” J. Ind. Eng. Chem.4(4), 246–249 (1912).
    [CrossRef]
  22. H. A. Lorentz, Encyclopädie der mathematischen Wissenschaften (B.G. Teubner, 1904).
  23. P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys.306(3), 566–613 (1900).
    [CrossRef]

2013 (1)

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

2012 (2)

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

2011 (3)

M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011).
[CrossRef]

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

2010 (1)

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

2007 (1)

A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007).
[CrossRef]

2006 (1)

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

2003 (1)

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

2000 (1)

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

1999 (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

1995 (1)

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
[CrossRef]

1991 (1)

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films203(2), 297–302 (1991).
[CrossRef]

1984 (1)

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

1982 (1)

J. C. Manifacier, “Thin metallic oxides as transparent conductors,” Thin Solid Films90(3), 297–308 (1982).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys.24, 636–664 (1935).

1912 (1)

E. W. Tillotson, “The Relation of the Refractive Index of Soda Lime Glasses to Their Chemical Composition,” J. Ind. Eng. Chem.4(4), 246–249 (1912).
[CrossRef]

1900 (1)

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys.306(3), 566–613 (1900).
[CrossRef]

Alexeev, I.

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011).
[CrossRef]

Baum, M.

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011).
[CrossRef]

Berggren, K.-F.

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys.24, 636–664 (1935).

Burgard, D.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Chen, B. J.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Chen, T. P.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Chun, S.-K.

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

Chung, D. S.

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

Drude, P.

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys.306(3), 566–613 (1900).
[CrossRef]

Ederth, J.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Engström, L.

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

Frey, L.

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Fukui, K.

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films203(2), 297–302 (1991).
[CrossRef]

George, J.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Granqvist, C. G.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

Hamberg, I.

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

Heszler, P.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Hoel, A.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Huang, J.

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

Hultaker, A.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Hwang, M.

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

Jank, M. P. M.

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Jeong, B.

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

Johnsson, P.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Jongerius, M. J.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Kakumu, T.

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
[CrossRef]

Kim, H.

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Kim, J.

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

Kovalenko, M. V.

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

Lee, J.-S.

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

Mahajeri, M.

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

Manifacier, J. C.

J. C. Manifacier, “Thin metallic oxides as transparent conductors,” Thin Solid Films90(3), 297–308 (1982).
[CrossRef]

Martínez, A.

A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007).
[CrossRef]

Martínez-García, A.

M. Sánchez-López, I. Moreno, and A. Martínez-García, “Teaching diffraction gratings by means of a phasor analysis,” Proc. SPIE ETOP (2009).
[CrossRef]

Maruyama, T.

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films203(2), 297–302 (1991).
[CrossRef]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Menon, C. S.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

Minami, T.

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
[CrossRef]

Moon, J.

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

Moreno, I.

A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007).
[CrossRef]

M. Sánchez-López, I. Moreno, and A. Martínez-García, “Teaching diffraction gratings by means of a phasor analysis,” Proc. SPIE ETOP (2009).
[CrossRef]

Murata, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Niklasson, G. A.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Peukert, W.

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Piqué, A.

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Polster, S.

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

Rechtenwald, T.

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

Ryssel, H.

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Sánchez-López, M.

A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007).
[CrossRef]

M. Sánchez-López, I. Moreno, and A. Martínez-García, “Teaching diffraction gratings by means of a phasor analysis,” Proc. SPIE ETOP (2009).
[CrossRef]

Schäfer, S.

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Schmidt, M.

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011).
[CrossRef]

Schneider, A.

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

Sernelius, B. E.

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

Sonohara, H.

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
[CrossRef]

Sun, C. Q.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Sun, X. W.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Sun, Z.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Takata, S.

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
[CrossRef]

Talapin, D. V.

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

Tay, B. K.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Thiem, H.

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Tillotson, E. W.

E. W. Tillotson, “The Relation of the Refractive Index of Soda Lime Glasses to Their Chemical Composition,” J. Ind. Eng. Chem.4(4), 246–249 (1912).
[CrossRef]

van Doorn, A. R.

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

Voigt, M.

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

Walther, S.

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Xu, C. X.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Yang, Y.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Ann. Phys. (2)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys.24, 636–664 (1935).

P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys.306(3), 566–613 (1900).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

M. Baum, S. Polster, M. P. M. Jank, I. Alexeev, L. Frey, and M. Schmidt, “Efficient laser induced consolidation of nanoparticulate ZnO thin films with reduced thermal budget,” Appl. Phys., A Mater. Sci. Process.107(2), 269–273 (2012).
[CrossRef]

M. Baum, H. Kim, I. Alexeev, A. Piqué, and M. Schmidt, “Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers,” Appl. Phys., A Mater. Sci. Process.111(3), 799–805 (2013).
[CrossRef]

Eur. J. Phys. (1)

A. Martínez, M. Sánchez-López, and I. Moreno, “Phasor analysis of binary diffraction gratings with different fill factors,” Eur. J. Phys.28(5), 805–816 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

J. Ind. Eng. Chem. (1)

E. W. Tillotson, “The Relation of the Refractive Index of Soda Lime Glasses to Their Chemical Composition,” J. Ind. Eng. Chem.4(4), 246–249 (1912).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

M. Baum, I. Alexeev, and M. Schmidt, “Laser Treatment of ITO and ZnO Nanoparticles for the Production of Thin Conducting Layers on Transparent Substrates,” J. Laser Micro/Nanoeng.6(3), 191–194 (2011).
[CrossRef]

Mater. Sci. Eng. B (1)

M. Hwang, B. Jeong, J. Moon, S.-K. Chun, and J. Kim, “Inkjekt-printing of indium tin oxide (ITO) films for transparent conducting electrodes,” Mater. Sci. Eng. B176(14), 1128–1131 (2011).
[CrossRef]

Microelectron. Eng. (1)

S. Walther, S. Schäfer, M. P. M. Jank, H. Thiem, W. Peukert, L. Frey, and H. Ryssel, “Influence of annealing temperature and measurement ambient on TFTs based on gas phase synthesized ZnO nanoparticles,” Microelectron. Eng.87(11), 2312–2316 (2010).
[CrossRef]

Nat. Nanotechnol. (1)

J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, “Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays,” Nat. Nanotechnol.6(6), 348–352 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (2)

J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, “Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles,” Phys. Rev. B68(15), 155410 (2003).
[CrossRef]

I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3,” Phys. Rev. B30, 3240–3249 (1984).

Surf. Coat. Tech. (1)

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Tech.132(1), 45–48 (2000).
[CrossRef]

Thin Solid Films (5)

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin Solid Films270(1-2), 37–42 (1995).
[CrossRef]

J. C. Manifacier, “Thin metallic oxides as transparent conductors,” Thin Solid Films90(3), 297–308 (1982).
[CrossRef]

T. Maruyama and K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition,” Thin Solid Films203(2), 297–302 (1991).
[CrossRef]

M. Mahajeri, A. Schneider, M. Baum, T. Rechtenwald, M. Voigt, M. Schmidt, and W. Peukert, “Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films,” Thin Solid Films520(17), 5741–5745 (2012).
[CrossRef]

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510(1-2), 95–101 (2006).
[CrossRef]

Other (4)

H. A. Lorentz, Encyclopädie der mathematischen Wissenschaften (B.G. Teubner, 1904).

M. Sánchez-López, I. Moreno, and A. Martínez-García, “Teaching diffraction gratings by means of a phasor analysis,” Proc. SPIE ETOP (2009).
[CrossRef]

Eugene Hecht, Optics. 4th Edition (Addison Wesley Longman, Inc., USA, 2002).

M. Groß, Druckbare, nanopartikuläre Indiumzinnoxidschichten für optoelektronische Anwendungen, Dissertation, Friedrich-Alexander-Universität Erlangen-Nuremberg, 2009, p.33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the transmission grating. (b) LSM image of the fabricated diffraction grating with step height of 740 nm ± 20 nm, diffraction period of 50 µm and 50% fill factor.

Fig. 2
Fig. 2

Relative intensity of the diffraction orders recorded for the 632 nm laser normalized with respect to the highest occurring intensity (red crosses) and the fitted values predicted by the theory (black circles). The lines are a guide to the eye only.

Fig. 3
Fig. 3

Effective refractive index of the ITO layer given by the chosen ellipsometric model. The black crosses mark the values of n determined by diffraction pattern evaluation.

Fig. 4
Fig. 4

Transmission, absorption and reflection (direct + diffuse) calculated in the simulation as well as the measured transmission for a particle layer with a thickness of 800 nm (dashed line)

Tables (1)

Tables Icon

Table 1 Nanoparticle ITO Layer Index of Refraction

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G m = 1 p p/2 p/2 g( x )exp( im 2πx p )dx
g( x )={ A e iφ if x[ p /2 , p /2 +ap ] 1 if x[ p /2 +ap, +p /2 ]
I m ={ [ ( 1A ) 2 +4A sin 2 ( φ 2 ) ] sin 2 ( 0.5mπ ) m 2 π 2 for m=1,2,3... 1 4 [ ( 1A ) 2 +4A cos 2 ( φ 2 ) ]        for m=0
I m ={ 4 m 2 π 2 sin 2 ( φ 2 ) sin 2 ( mπ 2 ) for m=1,2,3... cos 2 ( φ 2 ) for m=0
I S =sin2Ψ×sinΔ I C =sin2Ψ×cosΔ
χ 2 = 1 2NP1 i=1 N [ ( I s m i I s c i ( λ i ) σ s m i ) 2 + ( I c m i I c c i ( λ i ) σ c m i ) 2 ]
ε= ε + ( ε s ε ) ω t 2 ω t 2 ω 2 +i Γ 0 ω + ω p 2 ω 2 +i Γ D ω

Metrics