Abstract

We present a new approach to long range coupling based on a combination of adiabatic passage and lateral leakage in thin shallow ridge waveguides on a silicon photonic platform. The approach enables transport of light between two isolated waveguides through a mode of the silicon slab that acts as an optical bus. Due to the nature of the adiabatic protocol, the bus mode has minimal population and the transport is highly robust. We prove the concept and examine the robustness of this approach using rigorous modelling. We further demonstrate the utility of the approach by coupling power between two waveguides whilst bypassing an intermediate waveguide. This concept could form the basis of a new interconnect technology for silicon integrated photonic chips.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on insulator fabricated with CMOS technology,” J. Lightwave Technol.23, 401, (2005).
    [CrossRef]
  2. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
    [CrossRef]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
    [CrossRef]
  4. A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
    [CrossRef] [PubMed]
  5. P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express15, 12686–12691 (2007).
    [CrossRef] [PubMed]
  6. W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32, 2801–2803 (2007).
    [CrossRef] [PubMed]
  7. N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011).
    [CrossRef] [PubMed]
  8. M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
    [CrossRef]
  9. K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009).
    [CrossRef]
  10. D. Dai, Z. Wang, N. Julian, and J. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express18, 27404–27415 (2010).
    [CrossRef]
  11. N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
    [CrossRef]
  12. J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).
  13. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
    [CrossRef]
  14. K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
    [CrossRef]
  15. A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
    [CrossRef]
  16. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
    [CrossRef]
  17. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
    [CrossRef]
  18. S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A, 359(2), 166–170 (2006).
    [CrossRef]
  19. G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
    [CrossRef]
  20. D. Petrosyan and P. Lambropoulos, “Coherent population transfer in a chain of tunnel coupled quantum dots”, Optics Communications, 264(2), 419–425 (2006).
    [CrossRef]
  21. L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
    [CrossRef]
  22. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
    [CrossRef]
  23. C. E. Carroll and F. T. Hioe, “Adiabatic processes in three-level systems,” Phys. Rev. A42, 1522 (1990).
    [CrossRef] [PubMed]
  24. E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
    [CrossRef] [PubMed]
  25. J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A87, 063820 (2013).
    [CrossRef]
  26. J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
    [CrossRef]
  27. I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008).
    [CrossRef]
  28. J. Rech and S. Kehrein, “Effect of measurement backaction on adiabatic coherent electron transport,” Phys. Rev. Lett.106, 136808 (2011).
    [CrossRef] [PubMed]
  29. K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express20, 23108 (2012).
    [CrossRef] [PubMed]
  30. T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
    [CrossRef]
  31. R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
    [CrossRef]
  32. R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
    [CrossRef]
  33. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24, 4600–4615 (2006).
    [CrossRef]
  34. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express21, 11869–11876 (2013).
    [CrossRef] [PubMed]
  35. T. Meany, M. Delanty, S. Gross, G. D. Marshall, M. J. Steel, and M.J. Withford, “Non-classical interference in integrated 3D multiports,” Opt. Express20, 26895–26905 (2012).
    [CrossRef] [PubMed]
  36. T. Peters and T. Halfmann, “Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory,” Opt. Commun.271, 475–486 (2007).
    [CrossRef]
  37. N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998).
    [CrossRef]
  38. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett.34, 2405–2407 (2009).
    [CrossRef] [PubMed]
  39. T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett.95, 103601 (2005).
    [CrossRef] [PubMed]
  40. R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999).
    [CrossRef]
  41. A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
    [CrossRef]

2013 (3)

N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
[CrossRef]

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A87, 063820 (2013).
[CrossRef]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express21, 11869–11876 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (3)

N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011).
[CrossRef] [PubMed]

R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
[CrossRef]

J. Rech and S. Kehrein, “Effect of measurement backaction on adiabatic coherent electron transport,” Phys. Rev. Lett.106, 136808 (2011).
[CrossRef] [PubMed]

2010 (2)

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

D. Dai, Z. Wang, N. Julian, and J. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express18, 27404–27415 (2010).
[CrossRef]

2009 (5)

K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
[CrossRef]

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett.34, 2405–2407 (2009).
[CrossRef] [PubMed]

2008 (4)

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008).
[CrossRef]

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

2007 (6)

P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express15, 12686–12691 (2007).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32, 2801–2803 (2007).
[CrossRef] [PubMed]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
[CrossRef]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
[CrossRef]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
[CrossRef] [PubMed]

T. Peters and T. Halfmann, “Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory,” Opt. Commun.271, 475–486 (2007).
[CrossRef]

2006 (5)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24, 4600–4615 (2006).
[CrossRef]

D. Petrosyan and P. Lambropoulos, “Coherent population transfer in a chain of tunnel coupled quantum dots”, Optics Communications, 264(2), 419–425 (2006).
[CrossRef]

S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A, 359(2), 166–170 (2006).
[CrossRef]

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

2005 (2)

2004 (2)

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

2003 (1)

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

2001 (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
[CrossRef]

1999 (1)

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999).
[CrossRef]

1998 (1)

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998).
[CrossRef]

1990 (1)

C. E. Carroll and F. T. Hioe, “Adiabatic processes in three-level systems,” Phys. Rev. A42, 1522 (1990).
[CrossRef] [PubMed]

1988 (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Akiyama, S.

Baba, T.

Baehr-Jones, T.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Baets, R.

Becker, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Beckx, S.

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999).
[CrossRef]

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998).
[CrossRef]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Bienstman, P.

Birkl, G.

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Bogaerts, W.

Bowers, J.

Carroll, C. E.

C. E. Carroll and F. T. Hioe, “Adiabatic processes in three-level systems,” Phys. Rev. A42, 1522 (1990).
[CrossRef] [PubMed]

Carroll, M. S.

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

Chung, K.

Cole, J. H.

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Conrad, V. I.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Coppa, A.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Corbalan, R.

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Cresser, J.

I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008).
[CrossRef]

Cryan, M.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Dai, D.

Dalvand, N.

N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
[CrossRef]

N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011).
[CrossRef] [PubMed]

Das Sarma, S.

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

Delanty, M.

Della Valle, G.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
[CrossRef]

Devitt, S. J.

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Ding, R.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Dreisow, F.

Dumon, P.

Eckert, K.

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Ertmer, W.

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Fathpour, S.

Fernandez, T. T.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Fijol, J. J.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Fike, E. E.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Foglietti, V.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Frish, M. B.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Gaubatz, U.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Gilbody, D.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Greentree, A. D.

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A87, 063820 (2013).
[CrossRef]

K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express20, 23108 (2012).
[CrossRef] [PubMed]

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Gross, S.

Halfmann, T.

T. Peters and T. Halfmann, “Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory,” Opt. Commun.271, 475–486 (2007).
[CrossRef]

T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett.95, 103601 (2005).
[CrossRef] [PubMed]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
[CrossRef]

Hamilton, A. R.

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Harris, N.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

He, L.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Heinrich, M.

Hioe, F. T.

C. E. Carroll and F. T. Hioe, “Adiabatic processes in three-level systems,” Phys. Rev. A42, 1522 (1990).
[CrossRef] [PubMed]

Hirayama, N.

Hochberg, M.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Hollenberg, L. C. L.

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Horikawa, T.

Imai, M.

Jacobson, S. A.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Jalali, B.

Jamieson, D. N.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Jong, L. M.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Julian, N.

Kakihara, K.

K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009).
[CrossRef]

Kamleitner, I.

I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008).
[CrossRef]

Karle, T. J.

Keating, P. B.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Kehrein, S.

J. Rech and S. Kehrein, “Effect of measurement backaction on adiabatic coherent electron transport,” Phys. Rev. Lett.106, 136808 (2011).
[CrossRef] [PubMed]

Keil, R.

Kessler, W. J.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Klimeck, G.

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

Koch, T.

R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
[CrossRef]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
[CrossRef]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
[CrossRef]

Koch, T. L.

N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
[CrossRef]

N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011).
[CrossRef] [PubMed]

Koonath, P.

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Koshiba, M.

K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009).
[CrossRef]

Külz, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Lambropoulos, P.

D. Petrosyan and P. Lambropoulos, “Coherent population transfer in a chain of tunnel coupled quantum dots”, Optics Communications, 264(2), 419–425 (2006).
[CrossRef]

Laporta, P.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
[CrossRef]

LeBlanc, J. J.

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Levy, J. E.

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

Lewenstein, M.

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Li, J.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Lim, E.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Liow, T.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Lo, G.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Longhi, S.

F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett.34, 2405–2407 (2009).
[CrossRef] [PubMed]

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
[CrossRef]

S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A, 359(2), 166–170 (2006).
[CrossRef]

Luyssaert, B.

Marshall, G. D.

Meany, T.

Menzel-Jones, C.

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
[CrossRef] [PubMed]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Milner, V.

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
[CrossRef] [PubMed]

Mitchell, A.

N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
[CrossRef]

N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011).
[CrossRef] [PubMed]

R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
[CrossRef]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
[CrossRef]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
[CrossRef]

Mompart, J.

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Muller, R. P.

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

Nguyen, T.

R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
[CrossRef]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
[CrossRef]

Nguyen, T. G.

N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
[CrossRef]

N. Dalvand, T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Thin-ridge Silicon-on-Insulator waveguides with directional control of lateral leakage radiation,” Opt. Express19, 5635–5643 (2011).
[CrossRef] [PubMed]

Noguchi, Y.

Nolte, S.

Novack, A.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

O’Brien, J.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Ornigotti, M.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
[CrossRef]

Pafchek, R.

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
[CrossRef]

Paspalakis, E.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
[CrossRef]

Peters, T.

T. Peters and T. Halfmann, “Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory,” Opt. Commun.271, 475–486 (2007).
[CrossRef]

T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett.95, 103601 (2005).
[CrossRef] [PubMed]

Petrosyan, D.

D. Petrosyan and P. Lambropoulos, “Coherent population transfer in a chain of tunnel coupled quantum dots”, Optics Communications, 264(2), 419–425 (2006).
[CrossRef]

Pinguet, T.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Politi, A.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Rab, M.

Rahman, R.

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

Rarity, J.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Rech, J.

J. Rech and S. Kehrein, “Effect of measurement backaction on adiabatic coherent electron transport,” Phys. Rev. Lett.106, 136808 (2011).
[CrossRef] [PubMed]

Rudecki, P.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Saitoh, K.

K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009).
[CrossRef]

Schiemann, S.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Shapiro, E. A.

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
[CrossRef] [PubMed]

Shapiro, M.

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
[CrossRef] [PubMed]

Shore, B. W.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999).
[CrossRef]

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998).
[CrossRef]

Steel, M. J.

Streshinsky, M.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Szameit, A.

Taillaert, D.

Takahashi, H.

Teo, H.

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Thourhout, D.

Tomljenovic-Hanic, S.

Tummidi, R.

R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
[CrossRef]

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
[CrossRef]

Tummidi, R. S.

Tünnermann, A.

Twamley, J.

I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008).
[CrossRef]

Unanyan, R. G.

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999).
[CrossRef]

Usuki, T.

Vaitkus, J. A.

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A87, 063820 (2013).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Valle, G. D.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Vitanov, N. V.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
[CrossRef]

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998).
[CrossRef]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Wang, Z.

Webster, M.

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
[CrossRef]

Wiaux, V.

Withford, M.J.

Yatsenko, L. P.

T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett.95, 103601 (2005).
[CrossRef] [PubMed]

Yu, S.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-inducted population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763209 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett.149, 463–468 (1988).
[CrossRef]

Eur. Phys. J. D (1)

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D4, 15 (1998).
[CrossRef]

Group IV Photonics (GFP), 8th IEEE Int. Conf. (1)

R. Tummidi, T. Nguyen, A. Mitchell, and T. Koch, “An ultra-compact waveguide polarizer based on ‘anti-magic’ widths,” in “Group IV Photonics (GFP), 8th IEEE Int. Conf.,” 104–106 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Nguyen, R. Tummidi, T. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Technol. Lett.21, 486–488 (2009).
[CrossRef]

M. Webster, R. Pafchek, A. Mitchell, and T. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.19(6), 429–431 (2007).
[CrossRef]

J. Light. Tech. (1)

K. Kakihara, K. Saitoh, and M. Koshiba, “Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides,” J. Light. Tech.27(23), 5492–5499 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Nanotech. (1)

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Nat. Photonics (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3, 216–219 (2009).
[CrossRef]

Opt. Commun. (2)

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
[CrossRef]

T. Peters and T. Halfmann, “Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory,” Opt. Commun.271, 475–486 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Optical Fiber Comm. Conf. (1)

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. Harris, M. Streshinsky, L. He, A. Novack, E. Lim, T. Liow, H. Teo, G. Lo, and M. Hochberg, “A silicon platform for high-speed photonics systems,” in Optical Fiber Comm. Conf., (2012).
[CrossRef]

Optics Communications (1)

D. Petrosyan and P. Lambropoulos, “Coherent population transfer in a chain of tunnel coupled quantum dots”, Optics Communications, 264(2), 419–425 (2006).
[CrossRef]

Photon. Technol. Lett. (1)

N. Dalvand, T. G. Nguyen, T. L. Koch, and A. Mitchell, “Thin shallow-ridge silicon-on-insulator waveguide transitions and tapers,” Photon. Technol. Lett.25, 163–166 (2013).
[CrossRef]

Phys. Lett. A (1)

S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A, 359(2), 166–170 (2006).
[CrossRef]

Phys. Rev. A (6)

K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the ′ tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

C. E. Carroll and F. T. Hioe, “Adiabatic processes in three-level systems,” Phys. Rev. A42, 1522 (1990).
[CrossRef] [PubMed]

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A87, 063820 (2013).
[CrossRef]

I. Kamleitner, J. Cresser, and J. Twamley, “Adiabatic information transport in the presence of decoherence,” Phys. Rev. A77, 032331 (2008).
[CrossRef]

R. G. Unanyan, B. W. Shore, and K. Bergmann, “Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical adiabatic phase factors,” Phys. Rev. A59, 02910 (1999).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

Phys. Rev. B (4)

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

R. Rahman, R. P. Muller, J. E. Levy, M. S. Carroll, G. Klimeck, A. D. Greentree, and L. C. L. Hollenberg, “Coherent electron transport by adiabatic passage in an imperfect donor chain,” Phys. Rev. B82, 155315 (2010).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

J. Rech and S. Kehrein, “Effect of measurement backaction on adiabatic coherent electron transport,” Phys. Rev. Lett.106, 136808 (2011).
[CrossRef] [PubMed]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett.99, 033002 (2007).
[CrossRef] [PubMed]

T. Peters, L. P. Yatsenko, and T. Halfmann, “Experimental demonstration of selective coherent population transfer via a continuum,” Phys. Rev. Lett.95, 103601 (2005).
[CrossRef] [PubMed]

Proc. SPIE 4997, Phot. Pack. and Integr. III Conf. (1)

J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, “Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices,” Proc. SPIE 4997, Phot. Pack. and Integr. III Conf.157, (2003).

Science (1)

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The CTAP protocol taking population from |R〉 to |L〉: (a) A 3 state scheme with two isolated states coupled to a central bus, (b) counter-intuitive evolution of coupling strengths ΩL and ΩR, (c) population evolution in states |L〉, |R〉 and |B〉.

Fig. 2
Fig. 2

(a) |Ex|2 cross-section of two thin shallow ridges on a silicon slab; simulated modes of the uncoupled structure (WR = 0.7 μm): (b) and (c) the TM modes |L〉 and |R〉 respectively, and (d) the TE slab ‘bus’ mode |B〉; simulated supermodes of the coupled structure (WR = 1.22 μm): (e) fundamental (|B〉 populated), (f) first order (|B〉 unpopulated), and (g) second order (|B〉 populated).

Fig. 3
Fig. 3

(a) Cross-section of single thin shallow ridge on a silicon slab, (b) supermode effective index as a function of slab width for several modes of this system (WR = 1.22 μm), (c) supermode effective index as a function of waveguide offset for the phase matched TE and TM modes (slab width = 30.4 μm).

Fig. 4
Fig. 4

(a) Cross-section of two waveguides on a silicon slab; (b) Separating both the waveguides shows periodic 3-mode splitting, both waveguides strongly radiate when separated by 6.6 μm, (c) Monitoring the mode field of the null state for complete isolation of |R〉 by keeping |L〉 fixed in a strongly radiating position (x=−3.30 μm) while |R〉 is translated further.

Fig. 5
Fig. 5

(a) plan view of longitudinally invariant waveguides (pink indicates strong coupling, green indicates weak coupling), excitation on |R〉; (b) optical propagation for uncoupled configuration; (c) plan view of translated waveguides in intuitive CTAP configuration, excitation on |L〉; (d) optical propagation for intuitive configuration; (e) plan view of translated waveguides in counter-intuitive CTAP configuration; (f) optical propagation for counterintuitive configuration. (g) supermode effective index throughout CTAP evolution; In each case zmax = 10mm.

Fig. 6
Fig. 6

(a) Lateral (Ex) optical propagation of device above adiabatic limit: (zmax > Alim); (b) |L〉 output power as a function of device length (zmax); (c) Optical propagation of device with zmax < Alim; (d) TE polarised field (Ex) close to the input termination (common to all simulations).

Fig. 7
Fig. 7

(a) Cross-section of three waveguides on a silicon slab; (b) plan illustration of bypass CTAP coupler in uncoupled configuration with excitation on |I〉; (c) optical propagation for uncoupled configuration; (d) plan illustration of bypass CTAP coupler in intuitive configuration with excitation on |L〉; (e) optical propagation for intuitive configuration; (f) plan illustration of bypass CTAP coupler in counter-intuitive configuration with excitation on |R〉; (g) optical propagation for counter-intuitive configuration. In each case zmax = 10mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H ( z ) = i = { L , B , R } β i | i i | + Ω L | B L | + Ω R | B R | + h . c . ,
| D 0 = Ω R | L Ω L | R Ω L 2 + Ω R 2 .

Metrics