Abstract

A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10 W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 61S → 63P transition in mercury.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
    [CrossRef]
  2. T. R. Gosnell, “Laser cooling of a solid by 65K starting from room temperature,” Opt. Lett.24, 1041–1043 (1999).
    [CrossRef]
  3. L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
    [CrossRef]
  4. P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
    [CrossRef]
  5. G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
    [CrossRef] [PubMed]
  6. F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
    [CrossRef]
  7. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
    [CrossRef]
  8. D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
    [CrossRef]
  9. D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
    [CrossRef] [PubMed]
  10. D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
    [CrossRef]
  11. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
    [CrossRef] [PubMed]
  12. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007).
    [CrossRef] [PubMed]
  13. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett.30, 459–461 (2005).
    [CrossRef] [PubMed]
  14. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  15. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12, 6088–6092 (2004).
    [CrossRef] [PubMed]
  16. M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
    [CrossRef]
  17. M. Hildebrandt, M. Frede, and D. Kracht, “Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power,” Opt. Lett.32, 2345–2347 (2007).
    [CrossRef] [PubMed]
  18. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, “Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,” Opt. Lett.24, 673–675 (1999).
    [CrossRef]
  19. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express17, 447–454 (2009).
    [CrossRef] [PubMed]
  20. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
    [CrossRef]
  21. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm,” Appl. Opt.45, 7908–7911 (2006).
    [CrossRef] [PubMed]
  22. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
    [CrossRef]
  23. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
    [CrossRef]
  24. W. G. Schweitzer, “Hyperfine structure and isotope shifts in the 2537-Å line of mercury by a new interferometric method,” J. Opt. Soc. Am.53, 1055–1071 (1963).
    [CrossRef]
  25. M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
    [CrossRef]

2013 (1)

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

2012 (2)

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

2011 (4)

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

2010 (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

2009 (2)

2007 (3)

2006 (1)

2005 (1)

2004 (1)

2000 (2)

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

1999 (2)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

1989 (1)

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

1963 (1)

Alegria, C.

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Alvarez-Chavez, J. A.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Beczkowiak, A.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Begemann, F.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Bize, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Broeng, J.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Chryssou, C. E.

Codemard, C. A.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Diehl, T.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Dupriez, P.

Feldker, T.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Fitzakerley, D.W.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Frede, M.

Fry, E. S.

Gabrielse, G.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Gavrielides, A.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

George, M. C.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Goldberg, L.

Gosnell, T. R.

Grzonka, D.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Hänsch, T. W.

Harber, D. M.

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

Hessels, E. A.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Hickey, L. M. B.

Hildebrandt, M.

Horley, R.

Jeong, Y.

Kalra, R.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Kirchner, M.

Kliner, D. A. V.

Koglbauer, A.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Kolbe, D.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
[CrossRef] [PubMed]

Kolthammer, W. S.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Koplow, J. P.

Kracht, D.

Le Coq, Y.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Lesanovsky, I.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Li, W.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Lieto, A. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Lyngs, J. K.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Markert, F.

Maruyama, H.

McConnell, R.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

McFerran, J. J.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Mejri, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Müller, M.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Müllers, A.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Nilsson, J.

Oelert, W.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Olausson, C. B.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Payne, D.

Payne, D. N.

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Richerme, P.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Romalis, M. V.

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

Sahu, J.

Sahu, J. K.

Scheid, M.

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
[CrossRef] [PubMed]

M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007).
[CrossRef] [PubMed]

Schmidt-Kaler, F.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Schweitzer, W. G.

Sefzick, T.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Seifert, A.

Seletskiy, D. V.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Shirakawa, A.

Sinther, M.

Siol, S.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

Soh, D. B. S.

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Specht, S.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

Stappel, M.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Steinborn, R.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Storry, C. H.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Tonelli, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Turner, P. W.

Ueda, K.

Villwock, P.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

Walther, T.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm,” Appl. Opt.45, 7908–7911 (2006).
[CrossRef] [PubMed]

Walz, J.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
[CrossRef] [PubMed]

M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007).
[CrossRef] [PubMed]

Wang, J.

Wanzcyk, L.

Weel, M.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Yi, L.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Zadnik, M. G.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

Zielinski, M.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Zoller, P.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Can. J. Phys. (1)

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Eur. Phys. J. D (1)

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Int. J. Mass Spectrom. (1)

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Laser Phys. (1)

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

Nat. Phot. (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

New. J. Phys. (1)

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Opt. Commun. (1)

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (1)

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Other (1)

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Level scheme of the relevant energy levels in Ytterbium. A, B and C mark the absorption transitions which can be identified in the spectrum (b). (b) Measured absorption spectrum of a 10 m low doped double clad Ytterbium fiber (Nufern LMA-YDF-10/400) at room and liquid nitrogen temperature.

Fig. 2
Fig. 2

Experimental setup. (a) 450 mW laser light, provided by a fiber coupled MOPA system at 1015 nm, is amplified in a cryogenic fiber amplifier up to 10 W. The doped fiber is placed in liquid nitrogen and end-pumped by a fiber coupled diode laser. The amplified light is ASE filtered and polarization analyzed. (b) A part of the amplified light is frequency doubled twice to 254 nm. For a mercury spectroscopy the beam is split at a beamsplitter cube and one part is guided through a 2 mm mercury cell to the signal photo diode, while the other part is monitored with a reference photo diode. pmSMF: polarization maintaining single mode fiber, MMF: multi mode fiber, YDF: Ytterbium doped fiber, LN2: liquid nitrogen, λ/2: half-wave plate, λ/4: quarter-wave plate, PBC: polarizing beamsplitter cube, SHG: second harmonic generation, LBO: lithium triborate, BBO: β-barium borate.

Fig. 3
Fig. 3

P- and s-polarized output power vs. pump power. The output power is ASE and pump light filtered. The slope efficiency is 41%. Inset (a) shows the ASE spectrum with and without ASE filtering at maximum pump power. Inset (b) shows the longtime stability at maximum output power.

Fig. 4
Fig. 4

Polarized output power for different seed powers as a function of the incident pump power.

Fig. 5
Fig. 5

(a) Measured (black squares) and theoretical (red solid line) absorption spectrum of the 61S0 → 63P1 transition in mercury vapor for a 2 mm cell at room temperature. (b) Relative strength of the mercury isotopes and their hyperfine components.

Metrics