Abstract

We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  2. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
    [CrossRef] [PubMed]
  3. C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
    [CrossRef] [PubMed]
  4. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
    [CrossRef]
  5. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
    [CrossRef]
  6. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011).
    [CrossRef] [PubMed]
  7. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009).
    [CrossRef] [PubMed]
  8. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
    [CrossRef]
  9. B. Bhushan, Springer Handbook of Nanotechnology, 2nd ed. (Springer-Verlag, Heidelberg, 2007).
  10. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
    [CrossRef] [PubMed]
  11. C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
    [CrossRef]
  12. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
    [CrossRef]
  13. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
    [CrossRef] [PubMed]
  14. R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
    [CrossRef] [PubMed]
  15. P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. J. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol.28(6), 952–964 (2010).
    [CrossRef]
  16. O. V. Minaeva, A. Fraine, A. Sergienko, A. Korneev, A. Divochiy, and G. Goltsman, “High resolution optical time-domain reflectometry using superconducting single-photon detectors,” Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW3A.39.
  17. C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
    [CrossRef]
  18. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
    [CrossRef]
  19. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
    [CrossRef]
  20. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
    [CrossRef]
  21. A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
    [CrossRef]
  22. A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001).
    [CrossRef]
  23. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013).
    [CrossRef] [PubMed]
  24. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
    [CrossRef]
  25. Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).
  26. X. Hu, “Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics” PhD thesis, MIT (2011), http://hdl.handle.net/1721.1/63073

2013 (3)

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
[CrossRef]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013).
[CrossRef] [PubMed]

2012 (3)

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

2011 (6)

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011).
[CrossRef] [PubMed]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

2010 (1)

2009 (2)

2008 (1)

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

2007 (2)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

2006 (1)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

2005 (1)

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

2001 (2)

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001).
[CrossRef]

Adibi, A.

Alloing, B.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Anant, V.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Atabaki, A. H.

Balet, L.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Bauters, J. F.

Bawendi, M. G.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Beetz, J.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Berggren, K. K.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Bitauld, D.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Bleszynski Jayich, A. C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Blumenthal, D. J.

Bowers, J. E.

Calvez, S.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Chauvin, N.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Chulkova, G.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Correa, R. E.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Cryan, M. J.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Dauler, E. A.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Dawson, M. D.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Divochiy, A.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Dzardanov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Engin, E.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Eraerds, P.

Fiore, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Florya, I.

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

Fong, K. Y.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Gaeta, A. L.

Gaggero, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Gerardino, A.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Gisin, N. J.

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Goltsman, G.

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001).
[CrossRef]

Goltsman, G. N.

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Gondarenko, A.

Gruber, S. S.

Gu, E.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

Halder, M.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Harris, J. G. E.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Heck, M. J. R.

Hofling, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Hosseini, E. S.

Hu, X.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Jayich, A. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Jorel, C.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Kamp, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Kerman, A. J.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Korneev, A.

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001).
[CrossRef]

Korneeva, Y.

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

Legre, M.

Leoni, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Levy, J. S.

Li, L.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Li, M.

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Lipson, M.

Lunghi, L.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Ma, X.

C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
[CrossRef]

Marsili, F.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Mattioli, F.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

McKnight, L.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Miller, A. J.

Minaeva, O.

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Mirin, R. P.

Molnar, R. J.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Nair, G.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express13(26), 10846–10853 (2005).
[CrossRef] [PubMed]

O’Brien, J. L.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Okawachi, Y.

Okunev, O.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Palacios, T.

Pan, S. H.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Pernice, W. H. P.

C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
[CrossRef]

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013).
[CrossRef] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Rosenberg, D.

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Ryu, K. K.

Saha, K.

Sahin, D.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Schuck, C.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013).
[CrossRef] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Schwall, R. E.

Semenov, A.

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Sergienko, A. V.

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

Shanks, W. E.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Shuck, C.

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
[CrossRef]

Smirnov, K.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Sobolevski, R.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Soltani, M.

Spencer, D. T.

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

Stevens, M. J.

Sun, X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Tang, H. X.

C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
[CrossRef]

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013).
[CrossRef] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Thompson, J. D.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Thompson, M. G.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Tien, M.-C.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Vachtomin, Y.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Watson, I. M.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Wen, Y. H.

Williams, C.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Xiong, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. H. P. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Yang, C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Yang, J. K. W.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

Yegnanarayanan, S.

Zbinden, H.

P. Eraerds, M. Legre, J. Zhang, H. Zbinden, and N. J. Gisin, “Photon counting OTDR: advantages and limitations,” J. Lightwave Technol.28(6), 952–964 (2010).
[CrossRef]

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Zhang, J.

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Zioni, C.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

Zwickl, B. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hofling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolevski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

C. Shuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102(19), 191104 (2013).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88(11), 111116 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Goltsman, C. Zioni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

C. Shuck, W. H. P. Pernice, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “Matrix of integrated superconducting single-photon detectors with high timing resolution,” IEEE Trans. Appl. Supercond.23(3), 2201007 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Nano Lett. (1)

R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, F. Marsili, V. Anant, K. K. Berggren, and M. G. Bawendi, “Single photon counting from individual nanocrystals in the infrared,” Nano Lett.12(6), 2953–2958 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

New J. Phys. (1)

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Physica C (1)

A. Semenov, G. Goltsman, and A. Korneev, “Quantum detection by current carrying superconducting film,” Physica C351(4), 349–356 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Sci Rep (1)

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci Rep3, 1893 (2013).
[CrossRef] [PubMed]

Other (4)

Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. 21(3), 12022857 (2011).

X. Hu, “Efficient superconducting-nanowire single-photon detectors and their applications in quantum optics” PhD thesis, MIT (2011), http://hdl.handle.net/1721.1/63073

B. Bhushan, Springer Handbook of Nanotechnology, 2nd ed. (Springer-Verlag, Heidelberg, 2007).

O. V. Minaeva, A. Fraine, A. Sergienko, A. Korneev, A. Divochiy, and G. Goltsman, “High resolution optical time-domain reflectometry using superconducting single-photon detectors,” Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW3A.39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic view of one nanophotonic device. (b) Сross-section of a nanophotonic waveguide covered with a U-shaped NbN nanowire. (c) Simulated distribution of the electric field in the x-direction (TE-like mode) for 1550nm wavelength and 450x900nm Si3N4 waveguide. Light intensities are shown in linear color scale. (d) Simulated distribution of the TE-like mode for 1550nm wavelength and 450x900nm Si3N4 waveguide in the NbN nanowire covered region. (e) Simulated distribution of the electric TE-like mode for 1550nm wavelength and 330x1000nm Si3N4 waveguide. (f) Simulated distribution of the TE-like mode for 1550nm wavelength and 330x1000nm Si3N4 waveguide in the NbN nanowire covered region. (g) Optical micrograph of a matrix of devices on a chip.

Fig. 2
Fig. 2

(a) The simulated distribution of the electric field in the x-direction (TE-like mode) for 1550nm wavelength and a 225x1300nm Si3N4 waveguide cross-section. The field profile is shown in linear color scale. (b) The simulated distribution of the TE-like mode for 1550nm wavelength and 225x1300nm Si3N4 waveguide in the NbN nanowire covered region. (c) Schematic view of a half etched nanophotonic waveguide with a U-shaped NbN nanowire on top. (d) Transmission spectrum of the reference port of a fully etched device. (e) Transmission through a partially etched device, showing increased coupling bandwidth.

Fig. 3
Fig. 3

(a) SEM image of a fabricated nanophotonic circuit consisting of focusing grating couplers, a 50:50 Y-splitter and alignment marks. (b) SEM image of the central element of a nanophotonic device (the waveguide). (c) SEM image of the Y-splitter. (d) SEM image of a portion of the focusing grating coupler. (e)-(f) SEM images with false colors of U-shaped NbN nanowire atop of Si3N4 waveguide with different width (27, 95, 120 nm, respectively).

Fig. 4
Fig. 4

(a) AFM picture of a NbN nanowire atop a Si3N4 waveguide. (b)-(e) AFM pictures of fabricated NbN nanowires with different parameters (gap and wire width). The fabricated wires are still covered with residual HSQ ebeam resist after dry etching.

Fig. 5
Fig. 5

Absorption coefficient of U-shaped NbN nanowire versus different geometrical parameters nanophotonic devices. For all graphs solid line is a simulation and dots are measured data. Red data rely to Si3N4 330nm, SiO2 3300nm, black data relay to Si3N4 450nm, SiO2 2600nm platform. (a) Dependence of absorption coefficient versus waveguide width. (b) Dependence of absorption coefficient versus NbN nanowire width. (c) Dependence of absorption coefficient versus NbN nanowire gap. (d) Dependence of absorption coefficient versus NbN nanowire length.

Fig. 6
Fig. 6

Absorption coefficient of U-shaped NbN nanowire versus different geometrical parameters of nanophotonic devices. For all graphs the solid line is the simulation data and dots are measured data of a half etched Si3N4 450nm, SiO2 2600nm platform. (a) Dependence of the absorption coefficient versus waveguide width. (b) Dependence of the absorption coefficient versus NbN nanowire width. (c) Dependence of the absorption coefficient versus NbN nanowire gap. (d) Dependence of the absorption coefficient versus NbN nanowire length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= 10 l nw lg( P nw P ref ),

Metrics