Abstract

The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit – a capability that offers great potential for many quantum optical applications. *Contribution of NIST, an agency of the U.S. government, not subject to copyright

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Irwin and G. Hilton, Cryogenic Particle Detection (Springer-Verlag, 2005), chap. Transition-Edge Sensors, pp. 63–150.
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
    [CrossRef] [PubMed]
  3. B. Smith, D. Kundys, N. L. Thomas-Peter, P. Smith, and I. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express17, 13516–13525 (2009).
    [CrossRef] [PubMed]
  4. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
    [CrossRef]
  5. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
    [CrossRef]
  6. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
    [CrossRef]
  7. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
    [CrossRef]
  8. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
    [CrossRef]
  9. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
    [CrossRef]
  10. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
    [CrossRef]
  11. T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
    [CrossRef]
  12. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat Photon3, 696–705 (2009).
    [CrossRef]
  13. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032 (2008).
    [CrossRef] [PubMed]
  14. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
    [CrossRef]
  15. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
    [CrossRef] [PubMed]
  16. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
    [CrossRef]
  17. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007).
    [CrossRef] [PubMed]
  18. H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
    [CrossRef]
  19. D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
    [CrossRef]
  20. G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
    [CrossRef]
  21. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
    [CrossRef]
  22. B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
    [CrossRef]
  23. G. Wiedemann and R. Franz, “Ueber die waerme-leitungsfaehigkeit der metalle,” Annalen der Physik165, 497–531 (1853).
    [CrossRef]
  24. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005), 8th ed.
  25. B. Cabrera, “Introduction to tes physics,” J. Low Temp. Phys.151, 82 (2008).
    [CrossRef]
  26. P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
    [CrossRef]
  27. Value is based on experimentally measured low-temperature normal resistance of ≈ 10 Ω for a 20 nm thick square device. Note that this is for a W film that consists of a mixture of crystallographic phases and is not typical for bulk W.
  28. C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (American Chemical Society).
  29. P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975).
    [CrossRef]
  30. N. A. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
  31. We assume a typical simple model for the noise spectrum of the device as per Ref [1]. We find experimentally that this model fits reasonably well, although a more sophisticated approach will be necessary to describe the noise of these devices exactly.
  32. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
    [CrossRef] [PubMed]
  33. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett.35, 2849–2851 (2010).
    [CrossRef] [PubMed]
  34. The uncertainties quoted for the individual detector efficiencies include only the standard deviation of experimentally measured values, whereas the combined results also include the 1−σ uncertainty due to the calibration of the optical setup.

2013 (2)

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

2012 (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

2011 (6)

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
[CrossRef]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

2010 (2)

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett.35, 2849–2851 (2010).
[CrossRef] [PubMed]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

2009 (2)

2008 (4)

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032 (2008).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

B. Cabrera, “Introduction to tes physics,” J. Low Temp. Phys.151, 82 (2008).
[CrossRef]

2007 (1)

2006 (2)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
[CrossRef] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

2004 (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
[CrossRef]

2003 (1)

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
[CrossRef]

2002 (1)

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

1998 (1)

D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
[CrossRef]

1980 (1)

P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
[CrossRef]

1975 (1)

P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975).
[CrossRef]

1853 (1)

G. Wiedemann and R. Franz, “Ueber die waerme-leitungsfaehigkeit der metalle,” Annalen der Physik165, 497–531 (1853).
[CrossRef]

Albanis, V.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Ambran, S.

Banaszek, K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
[CrossRef]

Barbieri, M.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

Beetz, J.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Bozler, H. M.

P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
[CrossRef]

Broome, M. A.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

Cabrera, B.

B. Cabrera, “Introduction to tes physics,” J. Low Temp. Phys.151, 82 (2008).
[CrossRef]

Calkins, B.

B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
[CrossRef]

Clement, T. S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Datta, A.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

Echternach, P. M.

P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
[CrossRef]

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
[CrossRef]

Emmerson, G.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Feenan, P. J.

P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975).
[CrossRef]

Fiore, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Fox, A. E.

B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Franz, R.

G. Wiedemann and R. Franz, “Ueber die waerme-leitungsfaehigkeit der metalle,” Annalen der Physik165, 497–531 (1853).
[CrossRef]

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Furusawa, A.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007).
[CrossRef] [PubMed]

Gaggero, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Gates, J. C.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett.35, 2849–2851 (2010).
[CrossRef] [PubMed]

Gawith, C.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Gerrits, T.

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Glancy, S.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Goltsman, G. N.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

Gould, C. M.

P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
[CrossRef]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
[CrossRef] [PubMed]

Gruber, S. M.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat Photon3, 696–705 (2009).
[CrossRef]

Hayasaka, K.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

Hettich, C.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

Hilton, G.

K. Irwin and G. Hilton, Cryogenic Particle Detection (Springer-Verlag, 2005), chap. Transition-Edge Sensors, pp. 63–150.

Ho, C. Y.

C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (American Chemical Society).

Höfling, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Holmes, C.

Humphreys, P.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

Humphreys, P. C.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

Ibsen, M.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Irwin, K.

K. Irwin and G. Hilton, Cryogenic Particle Detection (Springer-Verlag, 2005), chap. Transition-Edge Sensors, pp. 63–150.

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Jin, X.-M.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

Kamp, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005), 8th ed.

Knill, E.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Kolthammer, W. S.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

Kulstad, K.

D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
[CrossRef]

Kundys, D.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. Smith, D. Kundys, N. L. Thomas-Peter, P. Smith, and I. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express17, 13516–13525 (2009).
[CrossRef] [PubMed]

Laing, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Lamas-Linares, A.

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Langford, N. K.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
[CrossRef] [PubMed]

Leoni, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Li, M.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

Liley, P. E.

C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (American Chemical Society).

Lita, A. E.

B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032 (2008).
[CrossRef] [PubMed]

Lobino, M.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Martinis, J. M.

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
[CrossRef]

Matthews, J. C. F.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Mattioli, F.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Mermin, N. A. D.

N. A. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).

Metcalf, B. J.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Migdall, A. L.

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Miller, A. J.

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032 (2008).
[CrossRef] [PubMed]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
[CrossRef]

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

Mirin, R. P.

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

Molmer, K.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
[CrossRef]

Myers, A.

P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975).
[CrossRef]

Nam, S. W.

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032 (2008).
[CrossRef] [PubMed]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
[CrossRef]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

Nielsen, B. M.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

O’Brien, J. L.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
[CrossRef] [PubMed]

Pernice, W. H. P.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

Peruzzo, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Politi, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Polzik, E. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

Powell, R. W.

C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (American Chemical Society).

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Rathje, J.

D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
[CrossRef]

Rogers, H. L.

Sahin, D.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Sang, D.

P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975).
[CrossRef]

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Sasaki, M.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007).
[CrossRef] [PubMed]

Schuck, C.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
[CrossRef]

Shadbolt, P. J.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
[CrossRef]

Smith, B.

Smith, B. J.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

Smith, P.

B. Smith, D. Kundys, N. L. Thomas-Peter, P. Smith, and I. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express17, 13516–13525 (2009).
[CrossRef] [PubMed]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Smith, P. G. R.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct uv-written waveguides using integrated bragg gratings,” Opt. Lett.35, 2849–2851 (2010).
[CrossRef] [PubMed]

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

Spring, J. B.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Suzuki, S.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

Svalgaard, M.

D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
[CrossRef]

Taakeoka, M.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

Takahashi, H.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007).
[CrossRef] [PubMed]

Tang, H. X.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

Thoman, M. R.

P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
[CrossRef]

Thomas-Peter, N.

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Thomas-Peter, N. L.

Thompson, M. G.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Tomlin, N. A.

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
[CrossRef] [PubMed]

U’Ren, A. B.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
[CrossRef]

Vayshenker, I.

Verde, M. R.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Wakui, K.

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007).
[CrossRef] [PubMed]

Walmsley, I.

Walmsley, I. A.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
[CrossRef]

Watts, S.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Wiedemann, G.

G. Wiedemann and R. Franz, “Ueber die waerme-leitungsfaehigkeit der metalle,” Annalen der Physik165, 497–531 (1853).
[CrossRef]

Williams, R.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

Zauner, D.

D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
[CrossRef]

Annalen der Physik (1)

G. Wiedemann and R. Franz, “Ueber die waerme-leitungsfaehigkeit der metalle,” Annalen der Physik165, 497–531 (1853).
[CrossRef]

Appl. Phys. Lett. (3)

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99, 181110 (2011).
[CrossRef]

A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003).
[CrossRef]

B. Calkins, A. E. Lita, A. E. Fox, and S. W. Nam, “Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks,” Appl. Phys. Lett.99, 241114 (2011).
[CrossRef]

Electron. Lett. (2)

D. Zauner, K. Kulstad, J. Rathje, and M. Svalgaard, “Directly uv-written silica-on-silicon planar waveguides with low insertion loss,” Electron. Lett.34, 1582–1584 (1998).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly uv-written channel waveguides with simultaneously defined integral bragg gratings,” Electron. Lett.38, 1531–1532 (2002).
[CrossRef]

J. Low Temp. Phys. (1)

B. Cabrera, “Introduction to tes physics,” J. Low Temp. Phys.151, 82 (2008).
[CrossRef]

Nat Photon (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat Photon3, 696–705 (2009).
[CrossRef]

Nat. Photon. (1)

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photon.6, 45–49 (2011).
[CrossRef]

Nature Comm. (2)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Comm.3, 1325 (2012).
[CrossRef]

B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. Humphreys, X.-M. Jin, M. Barbieri, W. S. Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nature Comm.4, 1356 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (2)

T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A82, 031802 (2010).
[CrossRef]

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. Lamas-Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84, 060301 (2011).
[CrossRef]

Phys. Rev. B (1)

P. M. Echternach, M. R. Thoman, C. M. Gould, and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1 k,” Phys. Rev. B46, 10339 (1980).
[CrossRef]

Phys. Rev. Lett. (4)

H. Takahashi, K. Wakui, S. Suzuki, M. Taakeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett.101, 233605/1–4 (2008).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 13603 (2011).
[CrossRef]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97, 083604/1–4 (2006).
[CrossRef]

Science (3)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical schroedinger kittens for quantum information processing,” Science312, 83–86 (2006).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008).
[CrossRef] [PubMed]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2013).
[CrossRef]

Solid State Commun. (1)

P. J. Feenan, A. Myers, and D. Sang, “De haas-van alphen measurements of the electron cyclotron mass in w,” Solid State Commun.16, 35–39 (1975).
[CrossRef]

Other (7)

N. A. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).

We assume a typical simple model for the noise spectrum of the device as per Ref [1]. We find experimentally that this model fits reasonably well, although a more sophisticated approach will be necessary to describe the noise of these devices exactly.

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005), 8th ed.

K. Irwin and G. Hilton, Cryogenic Particle Detection (Springer-Verlag, 2005), chap. Transition-Edge Sensors, pp. 63–150.

The uncertainties quoted for the individual detector efficiencies include only the standard deviation of experimentally measured values, whereas the combined results also include the 1−σ uncertainty due to the calibration of the optical setup.

Value is based on experimentally measured low-temperature normal resistance of ≈ 10 Ω for a 20 nm thick square device. Note that this is for a W film that consists of a mixture of crystallographic phases and is not typical for bulk W.

C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements: A Comprehensive Review (American Chemical Society).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

On-chip photon detection scheme. (a) Three TES detectors with extended absorbers are operated in series on a single waveguide, resulting in a combined 79 % single-pass detection efficiency after correcting for fiber-coupling losses. Integrated Bragg gratings and two-way fiber coupling allows for the precise determination of each device efficiency without additional assumptions. (b) The extended-absorber detector utilizes a gold spine to increase thermal conduction and allow absorbed energy (from photons) to be detected by the TES (square device, center). (c) Simulated mode profile as light propagating in the waveguide is absorbed by the detector due to evanescent coupling.

Fig. 2
Fig. 2

Operation of extended-absorber device. (a) Simulation of electron-system temperature evolution vs position on device after a 1550 nm photon is absorbed at x = +80 μm on one of the tails at t = 0. Black lines indicate borders of 10 μm square at center of device and show the temperature evolution of the TES itself. (b) Resulting simulated change in current flowing through the device, now shown for multiple impact points between xi = 0μm (red) and xi = +100μm (blue) in 10 μm steps.

Fig. 3
Fig. 3

Simulated and measured detector performance. (a) Thermal modeling. The red line shows the predicted energy resolution of the device as a function of detector length. Dotted lines indicate the standard error on the model. The circles represent the measured energy resolution of the three fabricated detectors. The spread of measured energy resolution values is likely due to differences in the superconducting-to-normal transition properties between the three detectors. (b) Optical modeling. The black lines show the predicted optical absorption efficiency of the TM and TE modes as a function of whole detector length. The inset shows the measured photon-detection efficiency of the TM mode for the three detectors.

Fig. 4
Fig. 4

Schematic of the experimental setup. Each TES requires its own SQUID and readout electronics. Bottom: detailed view of the on-chip TES showing the different launch directions A and B, the three detector efficiencies, η1, η2, η3 and the fiber-coupling efficiencies, ηA and ηB. The weak reflectivity integrated Bragg gratings are used to make a room-temperature characterization of device performance whilst the high-reflectivity grating at the end of the device provides a double-pass of the detectors for an appropriately tuned source launched into port A.

Fig. 5
Fig. 5

Response curve density plot for all three TES, while sending triggered photon pulses from A to B. Pulse-collections of increasing height correspond to increasing numbers of photons detected per pulse. The mean number of photons per pulse decreases as the light travels from detector 1 to detector 3 (bottom to top) due to absorption of the preceeding TES.

Fig. 6
Fig. 6

The relative power profile obtained for the TM-like mode of the device, each point corresponding to a grating. Red (blue) marks indicate measurements taken before (after) TES deposition. R’ and R” are the grating peak powers measured in reflection from the forward and reverse launches, respectively. Both waveguide propagation loss and detector absorption can be inferred from these measurements.

Tables (3)

Tables Icon

Table 1 Thermal and electrical material parameters

Tables Icon

Table 2 Derived individual detector efficiencies η1/2/3 and fiber-waveguide coupling efficiencies ηA/B. Derivations based on Eqn. 4

Tables Icon

Table 3 Classically obtained losses at each detector element ηabs,1/2/3, based on a grating based loss measurement.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q ˙ W F ( x ) = σ A L T e ( x ) T e ( x ) x ,
d Q ˙ e p ( x ) = Σ A ( T e ( x ) 5 T p 5 ) d x ,
γ A d x T ( x , t ) d T ( x , t ) d t = Q ˙ W F ( x , t ) x d x d Q ˙ e p ( x , t ) ,
N ¯ 1 = η A e α L 1 η 1 N ¯ in N ¯ 1 ' = η B e α ( L 1 + 2 L 2 ) ( 1 η 3 ) ( 1 η 2 ) η 1 N ¯ in N ¯ 2 = η A e α ( L 1 + L 2 ) ( 1 η 1 ) η 2 N ¯ in N ¯ 2 ' = η B e α ( L 1 + L 2 ) ( 1 η 3 ) η 2 N ¯ in N ¯ 3 = η A e α ( L 1 + 2 L 2 ) ( 1 η 1 ) ( 1 η 2 ) η 3 N ¯ in N ¯ 3 ' = η B e α L 1 η 3 N ¯ in ,

Metrics