Abstract

Since one hundred years it is known that some scarab beetles reflect elliptically and near-circular polarized light as demonstrated by Michelson for the beetle Chrysina resplendens. The handedness of the polarization is in a majority of cases left-handed but also right-handed polarization has been found. In addition, brilliant colors with metallic shine are observed. The polarization and color effects are generated in the beetle exoskeleton, the so-called cuticle. The objective of this work is to demonstrate that structural parameters and materials optical functions of these photonic structures can be extracted by advanced modeling of spectral multi-angle Mueller-matrix data recorded from beetle cuticles. A dual-rotating compensator ellipsometer is used to record normalized Mueller-matrix data in the spectral range 400 – 800 nm at angles of incidence in the range 25–75°. Analysis of data measured on the scarab beetle Cetonia aurata are presented in detail. The model used in the analysis mimics a chiral nanostructure and is based on a twisted layered structure. Given the complexity of the nanostructure, an excellent fit between experimental and model data is achieved. The obtained model parameters are the spectral variation of the refractive indices of the cuticle layers and structural parameters of the chiral structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Parker and D. McKenzie, “The cause of 50 million-year-old colour,” Proc. R. Soc.B270, S151–S153 (2003).
  2. O.M.F.R.S. Lord Rayleigh, “On the optical character of some brilliant animal colours,” Phil. Mag.6, 98–111 (1919).
  3. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
    [CrossRef]
  4. A. A. Michelson, “On metallic colouring in birds and insects,” Phil. Mag.21, 554–567 (1911).
  5. A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev.44, 531–562 (1969).
    [CrossRef] [PubMed]
  6. S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London, Ser. B178, 205–225 (1971).
    [CrossRef]
  7. D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt.45, 7944–7950 (2006).
    [CrossRef] [PubMed]
  8. I. Hodgkinson, S. Lowrey, L. Bourke, A. Parker, and M. W. McCall, “Mueller-matrix characterization of beetle cuticle: polarized and unpolarized reflections from representative architectures,” Appl. Opt.49, 4558–4567 (2010).
    [CrossRef] [PubMed]
  9. H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
    [CrossRef]
  10. J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linnean Soc.100, 585–596 (2010).
    [CrossRef]
  11. A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006).
    [CrossRef]
  12. Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue & Cell4, 189–217 (1972).
    [CrossRef]
  13. T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells - a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mat.10, 299–314 (2008).
    [CrossRef]
  14. G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
    [CrossRef] [PubMed]
  15. M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
    [CrossRef] [PubMed]
  16. Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008).
    [CrossRef]
  17. D. J. Brink and M. E. Lee, “Ellipsometry of diffractive insect reflectors,” Appl. Opt.35, 1950–1955 (1996).
    [CrossRef] [PubMed]
  18. D. J. Brink and M. E. Lee, “Thin-film biological reflectors: optical characterization of the Chrysiridia croesus moth,” Appl. Opt.37, 4213–4217 (1998).
    [CrossRef]
  19. S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003).
    [CrossRef]
  20. G. D. Bernard and W. H. Miller, “Interference filters in the corneas of Diptera” Invest. Ophthalmol7, 416–434 (1968).
    [PubMed]
  21. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007).
    [CrossRef]
  22. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev.E83, 051917 (2011).
  23. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).
    [CrossRef]
  24. L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
    [CrossRef]
  25. D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007).
    [CrossRef]
  26. J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
    [CrossRef]
  27. S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24, 2418–2425 (2007).
    [CrossRef]
  28. A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

2012 (1)

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
[CrossRef]

2011 (3)

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev.E83, 051917 (2011).

2010 (2)

2009 (1)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
[CrossRef]

2008 (2)

Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008).
[CrossRef]

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells - a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mat.10, 299–314 (2008).
[CrossRef]

2007 (3)

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007).
[CrossRef]

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24, 2418–2425 (2007).
[CrossRef]

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007).
[CrossRef]

2006 (3)

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt.45, 7944–7950 (2006).
[CrossRef] [PubMed]

A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006).
[CrossRef]

2005 (1)

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

2003 (2)

A. R. Parker and D. McKenzie, “The cause of 50 million-year-old colour,” Proc. R. Soc.B270, S151–S153 (2003).

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003).
[CrossRef]

1998 (2)

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

D. J. Brink and M. E. Lee, “Thin-film biological reflectors: optical characterization of the Chrysiridia croesus moth,” Appl. Opt.37, 4213–4217 (1998).
[CrossRef]

1996 (1)

1972 (1)

Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue & Cell4, 189–217 (1972).
[CrossRef]

1971 (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London, Ser. B178, 205–225 (1971).
[CrossRef]

1969 (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev.44, 531–562 (1969).
[CrossRef] [PubMed]

1968 (1)

G. D. Bernard and W. H. Miller, “Interference filters in the corneas of Diptera” Invest. Ophthalmol7, 416–434 (1968).
[PubMed]

1919 (1)

O.M.F.R.S. Lord Rayleigh, “On the optical character of some brilliant animal colours,” Phil. Mag.6, 98–111 (1919).

1911 (1)

A. A. Michelson, “On metallic colouring in birds and insects,” Phil. Mag.21, 554–567 (1911).

Arnold, M.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Arwin, H.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
[CrossRef]

Averdunk, H.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Barfoed, M.

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells - a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mat.10, 299–314 (2008).
[CrossRef]

Bernard, G. D.

G. D. Bernard and W. H. Miller, “Interference filters in the corneas of Diptera” Invest. Ophthalmol7, 416–434 (1968).
[PubMed]

Berthier, S.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003).
[CrossRef]

Biró, L. P.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Bouligand, Y.

Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue & Cell4, 189–217 (1972).
[CrossRef]

Bourke, L.

Brady, P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
[CrossRef]

Brink, D. J.

Brink, F.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Caveney, S.

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London, Ser. B178, 205–225 (1971).
[CrossRef]

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev.44, 531–562 (1969).
[CrossRef] [PubMed]

Charron, E.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003).
[CrossRef]

Cornet, A.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Da Silva, A.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003).
[CrossRef]

De Silva, L.

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24, 2418–2425 (2007).
[CrossRef]

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Dedouaire, D.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Defrance, P.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Deparis, O.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Fitz Gerald, J. D.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).
[CrossRef]

Goldstein, D. H.

Grosse-Brauckmann, K.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

Gu, M.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

Hawkins, D. C.

A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006).
[CrossRef]

Heraty, J. M.

A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006).
[CrossRef]

Hodgkinson, I.

Hodgkinson, I. J.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007).
[CrossRef]

Hooper, I. R.

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007).
[CrossRef]

Hyde, S. T.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Järrendahl, K.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev.E83, 051917 (2011).

Landin, J.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
[CrossRef]

Large, M. C. J.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

Leader, J.

S. Lowrey, L. De Silva, I. Hodgkinson, and J. Leader, “Observation and modeling of polarized light from scarab beetles,” J. Opt. Soc. Am. A24, 2418–2425 (2007).
[CrossRef]

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Lee, M. E.

Lenau, T.

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells - a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mat.10, 299–314 (2008).
[CrossRef]

Lord Rayleigh, O.M.F.R.S.

O.M.F.R.S. Lord Rayleigh, “On the optical character of some brilliant animal colours,” Phil. Mag.6, 98–111 (1919).

Lousse, V.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Lowrey, S.

Luna-Bárcenasa, G.

Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008).
[CrossRef]

Magnusson, R.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
[CrossRef]

McCall, M. W.

McKenzie, D.

A. R. Parker and D. McKenzie, “The cause of 50 million-year-old colour,” Proc. R. Soc.B270, S151–S153 (2003).

Mckenzie, D. R.

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

McNaughton, A.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Mecke, K.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

Mendoza-Galván, A.

Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008).
[CrossRef]

Michelson, A. A.

A. A. Michelson, “On metallic colouring in birds and insects,” Phil. Mag.21, 554–567 (1911).

Miller, W. H.

G. D. Bernard and W. H. Miller, “Interference filters in the corneas of Diptera” Invest. Ophthalmol7, 416–434 (1968).
[PubMed]

Montiel-González, Z.

Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008).
[CrossRef]

Murray, P.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Neshev, D. N.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

Neville, A. C.

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev.44, 531–562 (1969).
[CrossRef] [PubMed]

Noyes, J. A.

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007).
[CrossRef]

Parker, A.

Parker, A. R.

A. R. Parker and D. McKenzie, “The cause of 50 million-year-old colour,” Proc. R. Soc.B270, S151–S153 (2003).

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

Poladian, L.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Prinsloo, L. C.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007).
[CrossRef]

Pye, J. D.

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linnean Soc.100, 585–596 (2010).
[CrossRef]

Rassart, M.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Saba, M.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

Schröder-Turk, G. E.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Schultz, T. D.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
[CrossRef]

Seago, A. E.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
[CrossRef]

Smith, A. B. T.

A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006).
[CrossRef]

Thie, M.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

Turner, M. D.

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

van der Berg, N. G.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007).
[CrossRef]

Vandenbem, C.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Vigneron, J. P.

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Vigneron, J.-P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
[CrossRef]

Vukusic, P.

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007).
[CrossRef]

Wickham, S.

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Wu, Q. H.

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Yoshioka, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev.E83, 051917 (2011).

Adv. Eng. Mat. (1)

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells - a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mat.10, 299–314 (2008).
[CrossRef]

Appl. Opt. (4)

Biol. J. Linnean Soc. (1)

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linnean Soc.100, 585–596 (2010).
[CrossRef]

Biol. Rev. (1)

A. C. Neville and S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev.44, 531–562 (1969).
[CrossRef] [PubMed]

Coleopterists Soc. Monograph (1)

A. B. T. Smith, D. C. Hawkins, and J. M. Heraty, “An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analysis,” Coleopterists Soc. Monograph5, 35–46 (2006).
[CrossRef]

Electromagnetics (1)

L. De Silva, I. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, “Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings,” Electromagnetics25, 391–408 (2005).
[CrossRef]

Invest. Ophthalmol (1)

G. D. Bernard and W. H. Miller, “Interference filters in the corneas of Diptera” Invest. Ophthalmol7, 416–434 (1968).
[PubMed]

J. Exp. Biol. (1)

A. R. Parker, D. R. Mckenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol.201, 1307–1313 (1998).

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, “Unusual coloration in scarabaeid beetles,” J. Phys. D: Appl. Phys.40, 2189–2196 (2007).
[CrossRef]

J. R. Soc. Interface (1)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetlees (Coleoptera),” J. R. Soc. Interface6, S165–S184 (2009).
[CrossRef]

J. Struct. Biol. (1)

G. E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J. D. Fitz Gerald, L. Poladian, M. C. J. Large, and S. T. Hyde, “The chiral structure of porous chitin within the wing-scales of Callophrys rubi,” J. Struct. Biol.174, 290–295 (2011).
[CrossRef] [PubMed]

Opt. Comm. (1)

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Comm.228, 349–356 (2003).
[CrossRef]

Opt. Expr. (1)

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Expr.15, 4352–4358 (2007).
[CrossRef]

Phil. Mag. (3)

A. A. Michelson, “On metallic colouring in birds and insects,” Phil. Mag.21, 554–567 (1911).

O.M.F.R.S. Lord Rayleigh, “On the optical character of some brilliant animal colours,” Phil. Mag.6, 98–111 (1919).

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Phil. Mag.92, 1583–1599 (2012).
[CrossRef]

Phys. Rev. (1)

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev.E83, 051917 (2011).

Phys. Rev. E (1)

J. P. Vigneron, M. Rassart, C. Vandenbem, V. Lousse, O. Deparis, L. P. Biró, D. Dedouaire, A. Cornet, and P. Defrance, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E73, 041905 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

M. Saba, M. Thie, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106, 103902 (2011).
[CrossRef] [PubMed]

phys. stat. sol. (c) (1)

Z. Montiel-González, G. Luna-Bárcenasa, and A. Mendoza-Galván, “Thermal behaviour of chitosan and chitin thin films studied by spectroscopic ellipsometry,” phys. stat. sol. (c)5, 1434–1437 (2008).
[CrossRef]

Proc. R. Soc. (1)

A. R. Parker and D. McKenzie, “The cause of 50 million-year-old colour,” Proc. R. Soc.B270, S151–S153 (2003).

Proc. R. Soc. London, Ser. B (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London, Ser. B178, 205–225 (1971).
[CrossRef]

Tissue & Cell (1)

Y. Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue & Cell4, 189–217 (1972).
[CrossRef]

Other (1)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

To the left two photos of a 15 mm long green-colored specimen of C. aurata are combined so that the upper (lower) part shows reflection through a left- (right-) handed polarizing filter (Photo: Jens Birch). To the right an image of a scutellum is shown and the bright spot is scattered light from the reflected beam in the ellipsometer.

Fig. 2
Fig. 2

SEM image of an oblique cut (45°) of the cuticle of a C. aurata specimen.

Fig. 3
Fig. 3

SEM section of the cuticle (left) of a C. aurata specimen and structural model (right) used for analyzing MME-data. The gray scale illustrates different orientations of the optic axes in the exocuticle. The pitch Λ of the twisted structure is indicated. Notice that the sublayers in the model not are drawn to scale.

Fig. 4
Fig. 4

Contour plot showing spectral Mueller-matrix data versus angle of incidence measured on a green-colored C. aurata.

Fig. 5
Fig. 5

Mueller-matrix spectra (solid curves) at θ = 25°, 40°, 60° and 75° measured on a green-colored C. aurata. The dashed curves show model-generated spectra using the model in Fig. 3. Only data for θ = 25°, 40° and 60° are used in the regression analysis whereas the model data for θ = 75° are predicted.

Fig. 6
Fig. 6

Degree of polarization P of specular reflection for incident unpolarized light at θ = 25°, 40°, 60° and 75° (left) derived from MME-data on a green-colored C. aurata. The dashed curves show model-generated P. To the right, the angular dependence of the degree of polarization at λ = 400 nm is shown.

Fig. 7
Fig. 7

Refractive index of the uniaxial epicuticle (a) and of the biaxial sublayers in the exocuticle (b) of a specimen of C. aurata.

Tables (1)

Tables Icon

Table 1 Values and 90% confidence limits on fit parameters in the optical model used.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S o = MS i
[ S o 0 S o 1 S o 2 S o 3 ] = [ 1 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] [ 1 S i 1 S i 2 S i 3 ]
P = m 21 2 + m 31 2 + m 41 2
M S E = 1000 L M l = 1 L i , j = 1 4 [ ( m i j , l exp m i j , l mod ( x ) ) 2 ]
Λ = d exo / T Δ Λ = Λ Δ T / T
Δ λ = λ 1 λ 2 2 n a v d exo cos θ 1

Metrics