Abstract

A transformation-optics wedge waveguide designed for the simultaneous collection and directional collimation of pulsed dipole radiation is described and tested with numerical simulation. Azimuthal compression of free space toward a narrow fan-shaped waveguide sector allows dipole pulse radiation in free space to be transformed into a directional non-dispersive pulse propagating within that sector. The collection and collimation ability of the proposed structure is compared with classical approaches using metallic wedge mirrors and parabolic mirrors, which inherently allow multiple internal reflections and thus generate significant pulse distortion and low light-collection efficiency. It is shown that the optical pulse generated by the dipole and propagated through the proposed transformation-optics waveguide maintains its original shape within the structure, and demonstrates enhanced optical power.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009).
    [CrossRef]
  2. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
    [CrossRef]
  3. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
    [CrossRef]
  4. N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013).
    [CrossRef]
  5. Y. Ebenstein and L. A. Bentolila, “Single-molecule detection: Focusing on the objective,” Nat. Nanotechnol.5(2), 99–100 (2010).
    [CrossRef] [PubMed]
  6. S. McDaniel and S. Blair, “Increased OLED radiative efficiency using a directive optical antenna,” Opt. Express18(16), 17477–17483 (2010).
    [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
    [CrossRef]
  8. W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self-collimation effect,” Opt. Express15(3), 1234–1239 (2007).
    [CrossRef]
  9. R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006).
    [CrossRef] [PubMed]
  10. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36(13), 2530–2532 (2011).
    [CrossRef] [PubMed]
  11. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  12. E. Yablonovitch, “Inhibited Spontaneous Emission In Solid-State Physics And Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  13. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006).
    [CrossRef] [PubMed]
  14. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  15. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  16. U. Leonhardt, “Note on conformal invisibility devices,” New J. Phys.8(7), 118 (2006).
    [CrossRef]
  17. X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
    [CrossRef]
  18. J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
    [CrossRef] [PubMed]
  19. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express16(15), 11555–11567 (2008).
    [CrossRef] [PubMed]
  20. D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express16(23), 18731–18738 (2008).
    [CrossRef] [PubMed]
  21. B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER106, 107–119 (2010).
    [CrossRef]
  22. J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
    [CrossRef]
  23. P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
    [CrossRef]
  24. D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys.10(11), 115023 (2008).
    [CrossRef]
  25. D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express17(10), 7807–7817 (2009).
    [CrossRef] [PubMed]
  26. M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
    [CrossRef]
  27. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express18(1), 244–252 (2010).
    [CrossRef] [PubMed]

2013 (1)

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013).
[CrossRef]

2011 (3)

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett.36(13), 2530–2532 (2011).
[CrossRef] [PubMed]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
[CrossRef]

2010 (5)

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
[CrossRef]

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express18(1), 244–252 (2010).
[CrossRef] [PubMed]

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER106, 107–119 (2010).
[CrossRef]

Y. Ebenstein and L. A. Bentolila, “Single-molecule detection: Focusing on the objective,” Nat. Nanotechnol.5(2), 99–100 (2010).
[CrossRef] [PubMed]

S. McDaniel and S. Blair, “Increased OLED radiative efficiency using a directive optical antenna,” Opt. Express18(16), 17477–17483 (2010).
[CrossRef] [PubMed]

2009 (3)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009).
[CrossRef]

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express17(10), 7807–7817 (2009).
[CrossRef] [PubMed]

2008 (6)

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys.10(11), 115023 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express16(23), 18731–18738 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

2007 (2)

2006 (5)

R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Note on conformal invisibility devices,” New J. Phys.8(7), 118 (2006).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission In Solid-State Physics And Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Bentolila, L. A.

Y. Ebenstein and L. A. Bentolila, “Single-molecule detection: Focusing on the objective,” Nat. Nanotechnol.5(2), 99–100 (2010).
[CrossRef] [PubMed]

Blair, S.

Burokur, S. N.

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
[CrossRef]

Chen, H. S.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Chen, X.

R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006).
[CrossRef] [PubMed]

Chen, X. W.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

de Lustrac, A.

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
[CrossRef]

Dong, J. W.

Ebenstein, Y.

Y. Ebenstein and L. A. Bentolila, “Single-molecule detection: Focusing on the objective,” Nat. Nanotechnol.5(2), 99–100 (2010).
[CrossRef] [PubMed]

Eghlidi, H.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Feng, Y.

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009).
[CrossRef]

Germain, D.

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
[CrossRef]

Gotzinger, S.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Gregersen, N.

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013).
[CrossRef]

Hao, Y.

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

Huang, K.-M.

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER106, 107–119 (2010).
[CrossRef]

Jiang, T.

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

Jiang, Z. H.

Kaer, P.

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013).
[CrossRef]

Kidwai, O.

Kong, J. A.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Kukura, P.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Kwon, D. H.

D. H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express17(10), 7807–7817 (2009).
[CrossRef] [PubMed]

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys.10(11), 115023 (2008).
[CrossRef]

Kwon, D.-H.

Lederer, F.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
[CrossRef]

Lee, K. G.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Note on conformal invisibility devices,” New J. Phys.8(7), 118 (2006).
[CrossRef]

Lettow, R.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Li, J.

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

Liang, W. Y.

Lu, W.

R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006).
[CrossRef] [PubMed]

Luo, Y.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Massoud, A. T.

McDaniel, S.

Mørk, J.

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013).
[CrossRef]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009).
[CrossRef]

Pendry, J. B.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Rahm, M.

Ran, L. X.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Renn, A.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Roberts, D. A.

Rockstuhl, C.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
[CrossRef]

Sandoghdar, V.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

Schmiele, M.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
[CrossRef]

Schurig, D.

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

Sipe, J. E.

Smith, D. R.

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Tichit, P.-H.

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
[CrossRef]

Turpin, J. P.

Van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

Varma, V. S.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009).
[CrossRef]

Wang, B.

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER106, 107–119 (2010).
[CrossRef]

Wang, H. Z.

Werner, D. H.

Werner, P. L.

Wu, B.-I.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Xi, S.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Xu, X.

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission In Solid-State Physics And Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Zhang, J. J.

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Zhao, J.

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

Zhou, R.

R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006).
[CrossRef] [PubMed]

Zhukovsky, S. V.

Appl. Phys. Lett. (1)

X. Xu, Y. Feng, Y. Hao, J. Zhao, and T. Jiang, “Infrared carpet cloak designed with uniform silicon gration structure,” Appl. Phys. Lett.95(18), 184102 (2009).
[CrossRef]

Electron. Lett. (1)

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Coordinate-transformation-based ultra-directive emission,” Electron. Lett.47(10), 580–582 (2011).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE Sel. Top. Quantum Electron.19(5), 9000516 (2013).
[CrossRef]

Nat. Nanotechnol. (1)

Y. Ebenstein and L. A. Bentolila, “Single-molecule detection: Focusing on the objective,” Nat. Nanotechnol.5(2), 99–100 (2010).
[CrossRef] [PubMed]

Nat. Photonics (4)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gőtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011).
[CrossRef]

New J. Phys. (2)

U. Leonhardt, “Note on conformal invisibility devices,” New J. Phys.8(7), 118 (2006).
[CrossRef]

D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys.10(11), 115023 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. A (1)

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A81(3), 033837 (2010).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. Zhou, X. Chen, and W. Lu, “Strong focusing properties and far-field focus in the two-dimensional photonic-crystal-based concave lens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(1), 016610 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett.101(20), 203901 (2008).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission In Solid-State Physics And Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

PIER (2)

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER106, 107–119 (2010).
[CrossRef]

J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B.-I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIER81, 437–446 (2008).
[CrossRef]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Classical approaches for collecting dipole radiation using (a) a parabolic mirror, and (b) a wedge mirror waveguide; compared with (c) ideal dipole collection and collimation

Fig. 2
Fig. 2

Geometries of the transformation-optics wedge waveguide for optical dipole collimation in (a) the original space, and (b) the transformed space

Fig. 3
Fig. 3

Spatial distribution of permittivity: (a), ε xx , (b) ε xy , (c) ε yy and (d) ε zz .

Fig. 4
Fig. 4

Comparison of continuous dipole radiation waves in (a) free space, and (b) in the proposed dipole collimating structure with α=179.9° . (c) Spatial time-averaged power flow distribution and (d) the spatial average of the power flow in the compressed region for various α .

Fig. 5
Fig. 5

Pulsed dipole radiation distributions in free space at (a) t = 15fs, t = 20fs, t = 25fs, and t = 30fs; and (b) pulse propagation in the space-time domain

Fig. 6
Fig. 6

Pulsed dipole radiation distribution in the classical wedge mirror at (a) t = 15fs, t = 20fs, t = 25fs, and t = 30fs and (b) pulse propagation in the space-time domain

Fig. 7
Fig. 7

Pulsed dipole radiation in the proposed dipole pulse collimator at (a) t = 0fs, (b) t = 5fs, (c) t = 10fs, (d) t = 15fs, and (e) pulse propagation in the space-time domain.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

r'(r,ϕ,z)=r,
ϕ'(r,ϕ,z)={ β+( ϕ+α )( 180β )/( 180α ) for 180 ϕ α ϕβ/α for α ϕ α β+( ϕα )( 180β )/( 180α ) for α ϕ 180 ,
z'(r,ϕ,z)=z,
ε'=Jε J T /det( J ),
μ'=Jμ J T /det( J ),
J=( r'/r r'/ϕ r /z ϕ'/r ϕ /ϕ ϕ /z z /r z /ϕ z /z ).
J=( 1 0 0 0 p i 0 0 0 1 ),
p i ={ β/α for i=1 ( 180β )/( 180α ) for i=2 ,
ε'/ ε 0 =μ'/ μ 0 =( 1/ p i 0 0 0 p i 0 0 0 1/ p i ).
( A ρ A ϕ A z )=( cosϕ sinϕ 0 sinϕ cosϕ 0 0 0 1 )( A x A y A z )= T cr ( A x A y A z ).
D r = T cr 1 ε T cr E r .
ε ' r / ε 0 =μ ' r / μ 0 =( ε xx ε xy 0 ε yx ε yy 0 0 0 ε zz )=( ( 1/ p i ) cos 2 ϕ+ p i sin 2 ϕ ( 1/ p i p i )cosϕsinϕ 0 ( 1/ p i p i )cosϕsinϕ ( 1/ p i ) sin 2 ϕ+ p i cos 2 ϕ 0 0 0 1/ p i ).

Metrics