Abstract

A simple composite cavity structure Er3+-doped fiber laser was proposed and demonstrated experimentally. The resonant cavity consists of a pair of uniform fiber Bragg gratings (FBGs) and a π-phase shifted FBG. By introducing the π-phase shifted FBG into the cavity as the selective wavelength component, it can increase the effective length of the laser cavity and suppress the multi-longitudinal modes simultaneously. The narrow linewidth of 900Hz and low RIN of −95dB/Hz were obtained. And the lasing wavelength was rather stable with the pump power changing. The SMRS was more than 67dB. The results show that the proposed fiber laser has a good performance and considerable potential application for fiber sensor and optical communication.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett.16(6), 393–395 (1991).
    [CrossRef] [PubMed]
  2. H. Storoy, B. Sahlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
    [CrossRef]
  3. W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
    [CrossRef]
  4. X. Y. He, X. Fang, C. R. Liao, D. N. Wang, and J. Q. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express17(24), 21773–21781 (2009).
    [CrossRef] [PubMed]
  5. L. N. Ma, Y. M. Hu, S. D. Xiong, Z. Meng, and Z. L. Hu, “Intensity noise and relaxation oscillation of a fiber-laser sensor array integrated in a single fiber,” Opt. Lett.35(11), 1795–1797 (2010).
    [CrossRef] [PubMed]
  6. G. Chun, L. X. Xu, and M. Hai, “A Single Mode Fibre Laser by Applying Self-Injection Locking with a DFB Structure,” Chin. Phys. Lett.25(6), 2045–2047 (2008).
    [CrossRef]
  7. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express17(2), 395–404 (2009).
    [CrossRef] [PubMed]
  8. Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
    [CrossRef]
  9. P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
    [CrossRef]
  10. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13(7), 1243–1249 (1995).
    [CrossRef]
  11. J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.
  12. A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
    [CrossRef]
  13. C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
    [CrossRef]
  14. G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
    [CrossRef]
  15. Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).
  16. J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
    [CrossRef]
  17. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
    [CrossRef]
  18. A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of Bragg gratings and its application to Fabry-Pérot cavities,” J. Opt. Soc. Am. A20(2), 273–281 (2003).
    [CrossRef] [PubMed]
  19. W. Guan and J. R. Marciante, “Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser,” Electron. Lett.43(10), 558–559 (2007).
    [CrossRef]
  20. P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
    [CrossRef]
  21. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
    [CrossRef]
  22. Q. Li, F. P. Yan, W. J. Peng, T. Feng, S. C. Feng, S. Y. Tan, P. Liu, and W. H. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express20(21), 23684–23689 (2012).
    [CrossRef] [PubMed]
  23. H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
    [CrossRef]
  24. G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008).
    [CrossRef]

2012 (3)

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Q. Li, F. P. Yan, W. J. Peng, T. Feng, S. C. Feng, S. Y. Tan, P. Liu, and W. H. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express20(21), 23684–23689 (2012).
[CrossRef] [PubMed]

2011 (2)

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (2)

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

G. Chun, L. X. Xu, and M. Hai, “A Single Mode Fibre Laser by Applying Self-Injection Locking with a DFB Structure,” Chin. Phys. Lett.25(6), 2045–2047 (2008).
[CrossRef]

2007 (1)

W. Guan and J. R. Marciante, “Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser,” Electron. Lett.43(10), 558–559 (2007).
[CrossRef]

2004 (3)

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

2003 (2)

A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of Bragg gratings and its application to Fabry-Pérot cavities,” J. Opt. Soc. Am. A20(2), 273–281 (2003).
[CrossRef] [PubMed]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

2002 (1)

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

1999 (1)

H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
[CrossRef]

1997 (1)

H. Storoy, B. Sahlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
[CrossRef]

1995 (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13(7), 1243–1249 (1995).
[CrossRef]

1992 (1)

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
[CrossRef]

1991 (1)

Alegria, C.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Alvarez-Chavez, J. A.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

An, H. L.

H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
[CrossRef]

Azmi, A. I.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Chai, Q.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Chaikina, E. I.

Chang, J.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Chen, B.

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

Chen, L. R.

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

Chen, X. B.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Childs, P.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Chun, G.

G. Chun, L. X. Xu, and M. Hai, “A Single Mode Fibre Laser by Applying Self-Injection Locking with a DFB Structure,” Chin. Phys. Lett.25(6), 2045–2047 (2008).
[CrossRef]

Codemard, C.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Cranch, G. A.

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

DiGiovanni, D. J.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
[CrossRef]

Englund, M. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

Ezekiel, S.

Fan, W.

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

Fang, X.

Feng, S. C.

Feng, T.

Flockhart, G.

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

Floridi, M.

Fu, L.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Gao, K.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Geng, J. H.

Guan, W.

W. Guan and J. R. Marciante, “Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser,” Electron. Lett.43(10), 558–559 (2007).
[CrossRef]

Hai, M.

G. Chun, L. X. Xu, and M. Hai, “A Single Mode Fibre Laser by Applying Self-Injection Locking with a DFB Structure,” Chin. Phys. Lett.25(6), 2045–2047 (2008).
[CrossRef]

Hao, Q. Q.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

He, X. Y.

Hickey, L. M. B.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

Hu, Y. D.

Hu, Y. M.

Hu, Z. L.

Ibsen, M.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Jeong, Y.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Jiang, S. B.

Kaneda, Y.

Kersey, A. D.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13(7), 1243–1249 (1995).
[CrossRef]

Kirkendall, C. K.

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

Koo, K. P.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13(7), 1243–1249 (1995).
[CrossRef]

Leskova, T. A.

Leung, I.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Li, Q.

Q. Li, F. P. Yan, W. J. Peng, T. Feng, S. C. Feng, S. Y. Tan, P. Liu, and W. H. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express20(21), 23684–23689 (2012).
[CrossRef] [PubMed]

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Li, X. C.

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

Li, X. L.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Liao, C. R.

Lin, X. Z.

H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
[CrossRef]

Lin, Z. Q.

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

Liu, H. D.

H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
[CrossRef]

Liu, P.

Liu, X. Z.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Liu, Z. J.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Lizárraga, N.

Lu, P.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Lv, G. P.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Ma, H. T.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Ma, L. N.

Ma, Y. X.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Marciante, J. R.

W. Guan and J. R. Marciante, “Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser,” Electron. Lett.43(10), 558–559 (2007).
[CrossRef]

Martinelli, M.

Melloni, A.

Méndez, E. R.

Meng, Z.

Mizrahi, V.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
[CrossRef]

Morichetti, F.

Ni, J. S.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Nilsson, J.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Peng, G. D.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Peng, W. J.

Peyghambarian, N.

Puente, N. P.

Pun, E. Y. B.

H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
[CrossRef]

Ren, W. H.

Sahlgren, B.

H. Storoy, B. Sahlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
[CrossRef]

Sahu, J. K.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Smith, S. P.

Spiegelberg, C.

Storoy, H.

H. Storoy, B. Sahlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
[CrossRef]

Stubbe, R.

H. Storoy, B. Sahlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
[CrossRef]

Sulhoff, J. W.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
[CrossRef]

Sun, J. Q.

Sun, W. M.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Sun, Z. H.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Tan, S. Y.

Wang, C.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Wang, D. N.

Wang, H.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Wang, P. P.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Wang, Q. P.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Wang, W. J.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Wang, X. L.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Xiong, S. D.

Xu, L. X.

G. Chun, L. X. Xu, and M. Hai, “A Single Mode Fibre Laser by Applying Self-Injection Locking with a DFB Structure,” Chin. Phys. Lett.25(6), 2045–2047 (2008).
[CrossRef]

Xu, X. J.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Yan, F. P.

Yelen, K.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

Yuan, L. B.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Zarinetchi, F.

Zervas, M. N.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Zhang, X. L.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Zhang, X. Y.

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Zhao, Y. J.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Zhou, P.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Zhou, S. L.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Zhu, C. G.

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Zhu, Q.

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Zyskind, J. L.

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
[CrossRef]

Chin. Phys. Lett. (1)

G. Chun, L. X. Xu, and M. Hai, “A Single Mode Fibre Laser by Applying Self-Injection Locking with a DFB Structure,” Chin. Phys. Lett.25(6), 2045–2047 (2008).
[CrossRef]

Electron. Lett. (3)

H. Storoy, B. Sahlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
[CrossRef]

J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, and J. W. Sulhoff, “Short single frequency erbium-doped fibre laser,” Electron. Lett.28(15), 1385–1387 (1992).
[CrossRef]

W. Guan and J. R. Marciante, “Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser,” Electron. Lett.43(10), 558–559 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, “Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers,” IEEE Photon. Technol. Lett.11(7), 803–805 (1999).
[CrossRef]

IEEE Sens. J. (1)

G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

J. Lightwave Technol. (2)

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol.13(7), 1243–1249 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Phys. (1)

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, C. Wang, P. P. Wang, G. D. Peng, G. P. Lv, and X. Y. Zhang, “Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking,” Laser Phys.21(12), 2108–2111 (2011).
[CrossRef]

Laser Phys. Lett. (2)

P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, “Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation,” Laser Phys. Lett.9(8), 596–601 (2012).
[CrossRef]

Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, Z. H. Sun, P. P. Wang, G. P. Lv, and G. D. Peng, “Suppression of the intensity noise in distributed feedback fiber laser by self-injection locking,” Laser Phys. Lett.9, 739–743 (2012).

Opt. Commun. (1)

W. Fan, B. Chen, X. C. Li, L. R. Chen, and Z. Q. Lin, “Stress-induced single polarization DFB fiber lasers,” Opt. Commun.204(1-6), 157–161 (2002).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Opt. Lett. (2)

Photonic Sensors (1)

A. I. Azmi, I. Leung, X. B. Chen, S. L. Zhou, Q. Zhu, K. Gao, P. Childs, and G. D. Peng, “Fiber laser based hydrophone systems,” Photonic Sensors1(3), 210–221 (2011).
[CrossRef]

Other (1)

J. Z. Zhang, X. L. Li, Q. Chai, Q. Q. Hao, Q. Li, W. M. Sun, L. B. Yuan, P. Lu, and G. D. Peng, “Hydrophone based on intensity modulated DFB fiber laser,” in Proceedings of IEEE Conference on sensors (Kona, USA, 2010), pp. 315–317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the proposed laser. (FBG: fiber Bragg grating, WDM: wavelength division multiplexer; OSA: optical spectral analysis; PD: photo detector; Er3+: erbium-doped fiber)

Fig. 2
Fig. 2

Reflection spectrum of the π-phase shifted fiber Bragg grating

Fig. 3
Fig. 3

Output spectrum of the fiber laser. ((a) the DBR fiber laser without π-phase shifted FBG. (b)the composite structure fiber laser with π-phase shifted FBG.)

Fig. 4
Fig. 4

Linewidth of the proposed fiber laser.

Fig. 5
Fig. 5

RIN of the fiber laser(a: the usual DBR fiber laser without π-phase shifted FBG; b: the composite structure fiber laser with π-phase shifted FBG).

Fig. 6
Fig. 6

The optical spectra of the proposed fiber laser

Fig. 7
Fig. 7

Output power characteristics of the proposed fiber laser.

Fig. 8
Fig. 8

Optical spectrum of the proposed fiber laser measured by an OSA with a resolution of 0.02nm(black:without FBG3,Red:with FBG3)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PER=10*log( P max / P min ).

Metrics