Abstract

In the present paper we demonstrate the possibility to image dyed solids, i.e. Rhodamine B dyed polyethylene spheres, by means of two-photon absorption-induced photoacoustic scanning microscopy. A two-photon luminescence image is recorded simultaneously with the photoacoustic image and we show that location and size of the photoacoustic and luminescence image match. In the experiments photoacoustic signals and luminescence signals are generated by pulses from a femtosecond laser. Photoacoustic signals are acquired with a hydrophone; luminescence signals with a spectrometer or an avalanche photo diode. In addition we derive the expected dependencies between excitation intensity and photoacoustic signal for single-photon absorption, two-photon absorption and for the combination of both. In order to verify our setup and evaluation method the theoretical predictions are compared with experimental results for liquid and solid specimens, i.e. a carbon fiber, Rhodamine B solution, silicon, and Rhodamine B dyed microspheres. The results suggest that the photoacoustic signals from the Rhodamine B dyed microspheres do indeed stem from two-photon absorption.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. P. T. C. So, “Two-photon fluorescence light microscopy,” Encyclopedia of Life Sciences, Nature Publishing Group (2002).
  3. A. Danielli, K. I. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, and L. V. Wang “Non-linear photoacoustic microscopy with optical sectioning, ” presented at SPIE Photonics West, San Francisco, USA, 2–7 Feb. 2013.
  4. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express19(14), 13365–13377 (2011).
    [CrossRef] [PubMed]
  5. Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE7177, 71772A (2009).
    [CrossRef]
  6. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010).
    [CrossRef]
  7. M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
    [CrossRef]
  8. L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
    [CrossRef] [PubMed]
  9. P. Wilhelm and D. Stephan, “Photodegradation of rhodamine B in aqueous solution via SiO2 @ TiO2 nano-spheres,” J. Photochem. Photobiol. A185(1), 19–25 (2007).
    [CrossRef]
  10. Y. H. Lai, C. F. Chang, Y. H. Cheng, and C. K. Sun, “Two-Photon Photoacoustic Ultrasound Measurement by A Loss Modulation Technique,” Proc. of SPIE Vol. 8581, 85812R (2013).
    [CrossRef]
  11. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
    [CrossRef]
  12. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
    [CrossRef]
  13. A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-light Continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998).
    [CrossRef]
  14. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
    [CrossRef]
  15. C. Kittel, “Introduction to Solid State Physics” (Wiley, 2004).
  16. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
    [CrossRef]
  17. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses,” Phys. Rev. B13(8), 3515–3522 (1976).
    [CrossRef]
  18. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
    [CrossRef] [PubMed]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  20. G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
    [CrossRef] [PubMed]
  21. H. Kogelnik, “On the Propagation of Gaussian Beams of Light Through Lenslike Media Including those with a Loss or Gain Variation,” Appl. Opt.4(12), 1562 (1965).
    [CrossRef]
  22. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, 1995).
  23. R. H. Partridge, “Near Ultraviolet Absorption Spectrum of Polyethylene,” J. Chem. Phys.45(5), 1679 (1966).
    [CrossRef]
  24. Private communication from Cospheric (e-mail from 27.02.2013).
  25. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
    [CrossRef] [PubMed]
  26. Properties of Silicon (INSPEC, 1988).
  27. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007).
    [CrossRef]
  28. Onda Certificate of Hydrophone Calibration for HNC-1000 S/N:1193 (2011).
  29. P. N. T. Wells, “Ultrasonic Imaging of the human body,” Rep. Prog. Phys.62(5), 671–722 (1999).
    [CrossRef]
  30. C. Frez and G. J. Diebold, “Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments,” J. Chem. Phys.129(18), 184506 (2008).
    [CrossRef] [PubMed]
  31. Product information on Rhodamin B Polyethlyene Microspheres from Cospheric, http://www.cospheric-microspheres.com/Fluorescent_Microspheres_Rhodamine_B_p/rhodamine%20b%20microspheres.htm?1=1&CartID=0 (19.03.2013).
  32. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophoros with data from 690 to 1050nm,” J. Opt. Soc. Am. B13(3), 481 (1996).
    [CrossRef]
  33. H. Ju, R. A. Roy, and T. W. Murray, “Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy,” Biomed. Opt. Express4(1), 66–76 (2013).
    [CrossRef] [PubMed]
  34. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
    [CrossRef] [PubMed]
  35. A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
    [CrossRef]
  36. R. E. Barker, “An approximate relation between elastic moduli and thermal expansivities,” J. Appl. Phys.34(1), 107 (1963).
    [CrossRef]
  37. M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969).
    [CrossRef]
  38. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011).
    [CrossRef] [PubMed]

2013

G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
[CrossRef] [PubMed]

H. Ju, R. A. Roy, and T. W. Murray, “Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy,” Biomed. Opt. Express4(1), 66–76 (2013).
[CrossRef] [PubMed]

2012

A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
[CrossRef]

2011

2010

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010).
[CrossRef]

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

2009

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE7177, 71772A (2009).
[CrossRef]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

2008

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

C. Frez and G. J. Diebold, “Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments,” J. Chem. Phys.129(18), 184506 (2008).
[CrossRef] [PubMed]

2007

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

P. Wilhelm and D. Stephan, “Photodegradation of rhodamine B in aqueous solution via SiO2 @ TiO2 nano-spheres,” J. Photochem. Photobiol. A185(1), 19–25 (2007).
[CrossRef]

2006

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

2001

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

1999

P. N. T. Wells, “Ultrasonic Imaging of the human body,” Rep. Prog. Phys.62(5), 671–722 (1999).
[CrossRef]

1998

A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-light Continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998).
[CrossRef]

1996

1995

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
[CrossRef] [PubMed]

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1976

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses,” Phys. Rev. B13(8), 3515–3522 (1976).
[CrossRef]

1970

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

1969

M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969).
[CrossRef]

1966

R. H. Partridge, “Near Ultraviolet Absorption Spectrum of Polyethylene,” J. Chem. Phys.45(5), 1679 (1966).
[CrossRef]

1965

1963

R. E. Barker, “An approximate relation between elastic moduli and thermal expansivities,” J. Appl. Phys.34(1), 107 (1963).
[CrossRef]

1961

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

Barker, R. E.

R. E. Barker, “An approximate relation between elastic moduli and thermal expansivities,” J. Appl. Phys.34(1), 107 (1963).
[CrossRef]

Bechtel, J. H.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses,” Phys. Rev. B13(8), 3515–3522 (1976).
[CrossRef]

Berer, T.

G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
[CrossRef] [PubMed]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-light Continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998).
[CrossRef]

Burgholzer, P.

G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
[CrossRef] [PubMed]

Cherin, E.

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

Chin, S. L.

A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-light Continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998).
[CrossRef]

Danielli, A.

A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Diebold, G. J.

C. Frez and G. J. Diebold, “Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments,” J. Chem. Phys.129(18), 184506 (2008).
[CrossRef] [PubMed]

Drobizhev, M.

Foster, F. S.

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Frez, C.

C. Frez and G. J. Diebold, “Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments,” J. Chem. Phys.129(18), 184506 (2008).
[CrossRef] [PubMed]

Guethlein, G.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Hansen, W. N.

M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969).
[CrossRef]

Hennink, E. J.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
[CrossRef] [PubMed]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Hochreiner, A.

G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
[CrossRef] [PubMed]

Hu, S.

Ju, H.

Kogelnik, H.

Langer, G.

G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
[CrossRef] [PubMed]

Lee, M.

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

Makarov, N. S.

Maslov, K.

A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
[CrossRef]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011).
[CrossRef] [PubMed]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

More, R. M.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Murray, T. W.

Nambu, M.

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express19(14), 13365–13377 (2011).
[CrossRef] [PubMed]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010).
[CrossRef]

Partridge, R. H.

R. H. Partridge, “Near Ultraviolet Absorption Spectrum of Polyethylene,” J. Chem. Phys.45(5), 1679 (1966).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Pramanik, M.

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

Price, D. F.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Rebane, A.

Romo, P. C.

M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969).
[CrossRef]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

Roy, R. A.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

Shen, M.

M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969).
[CrossRef]

Shepherd, R. L.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Smith, W. L.

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses,” Phys. Rev. B13(8), 3515–3522 (1976).
[CrossRef]

Song, L.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
[CrossRef] [PubMed]

Stefanovic, B.

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

Stephan, D.

P. Wilhelm and D. Stephan, “Photodegradation of rhodamine B in aqueous solution via SiO2 @ TiO2 nano-spheres,” J. Photochem. Photobiol. A185(1), 19–25 (2007).
[CrossRef]

Stewart, R. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Takamatsu, T.

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express19(14), 13365–13377 (2011).
[CrossRef] [PubMed]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010).
[CrossRef]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE7177, 71772A (2009).
[CrossRef]

Tanke, H. J.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
[CrossRef] [PubMed]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

van Raaij, M. E.

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

Walling, R. S.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Wang, L. V.

A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
[CrossRef]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011).
[CrossRef] [PubMed]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Webb, W. W.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Wells, P. N. T.

P. N. T. Wells, “Ultrasonic Imaging of the human body,” Rep. Prog. Phys.62(5), 671–722 (1999).
[CrossRef]

White, W. E.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

Wilhelm, P.

P. Wilhelm and D. Stephan, “Photodegradation of rhodamine B in aqueous solution via SiO2 @ TiO2 nano-spheres,” J. Photochem. Photobiol. A185(1), 19–25 (2007).
[CrossRef]

Xia, J.

A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
[CrossRef]

Xu, C.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Yamaoka, Y.

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express19(14), 13365–13377 (2011).
[CrossRef] [PubMed]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010).
[CrossRef]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE7177, 71772A (2009).
[CrossRef]

Young, I. T.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007).
[CrossRef]

Biomed. Opt. Express

Biophys. J.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995).
[CrossRef] [PubMed]

J. Appl. Phys.

R. E. Barker, “An approximate relation between elastic moduli and thermal expansivities,” J. Appl. Phys.34(1), 107 (1963).
[CrossRef]

J. Biomed. Opt.

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

J. Chem. Phys.

M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969).
[CrossRef]

C. Frez and G. J. Diebold, “Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments,” J. Chem. Phys.129(18), 184506 (2008).
[CrossRef] [PubMed]

R. H. Partridge, “Near Ultraviolet Absorption Spectrum of Polyethylene,” J. Chem. Phys.45(5), 1679 (1966).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol. A

P. Wilhelm and D. Stephan, “Photodegradation of rhodamine B in aqueous solution via SiO2 @ TiO2 nano-spheres,” J. Photochem. Photobiol. A185(1), 19–25 (2007).
[CrossRef]

Meas. Sci. Technol.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses,” Phys. Rev. B13(8), 3515–3522 (1976).
[CrossRef]

Phys. Rev. Lett.

D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995).
[CrossRef] [PubMed]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-light Continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998).
[CrossRef]

Proc. SPIE

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE7177, 71772A (2009).
[CrossRef]

Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010).
[CrossRef]

M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010).
[CrossRef]

A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012).
[CrossRef]

Rep. Prog. Phys.

P. N. T. Wells, “Ultrasonic Imaging of the human body,” Rep. Prog. Phys.62(5), 671–722 (1999).
[CrossRef]

Rev. Sci. Instrum.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

P. T. C. So, “Two-photon fluorescence light microscopy,” Encyclopedia of Life Sciences, Nature Publishing Group (2002).

A. Danielli, K. I. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, and L. V. Wang “Non-linear photoacoustic microscopy with optical sectioning, ” presented at SPIE Photonics West, San Francisco, USA, 2–7 Feb. 2013.

Y. H. Lai, C. F. Chang, Y. H. Cheng, and C. K. Sun, “Two-Photon Photoacoustic Ultrasound Measurement by A Loss Modulation Technique,” Proc. of SPIE Vol. 8581, 85812R (2013).
[CrossRef]

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

C. Kittel, “Introduction to Solid State Physics” (Wiley, 2004).

Product information on Rhodamin B Polyethlyene Microspheres from Cospheric, http://www.cospheric-microspheres.com/Fluorescent_Microspheres_Rhodamine_B_p/rhodamine%20b%20microspheres.htm?1=1&CartID=0 (19.03.2013).

Properties of Silicon (INSPEC, 1988).

Onda Certificate of Hydrophone Calibration for HNC-1000 S/N:1193 (2011).

Private communication from Cospheric (e-mail from 27.02.2013).

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of the physical mechanism of two-photon absorption-induced photoacoustics and luminescence. Simultaneously two photons bring an electron from the quantum mechanical ground state (thick black solid line at the bottom) to an excited quantum state. In the sketch this process is labeled: 2p excitation. When the electron returns to the ground state part of the energy is released via luminescence and the other part via thermal energy. The thermal energy is proportional to the PA signal. Alternatively, the electron could relax purely thermally to the ground state without the emission of a luminescence photon (not shown).

Fig. 2
Fig. 2

Simplified schematic of the setup. Femtosecond laser pulses (red line) are focused onto the sample via an objective. Luminescence light (green) was collected with the same objective and directed to a spectrometer or to an avalanche photodiode via a cold mirror. Broadband filters protected the avalanche photodiode and the spectrometer from the high intensity laser light. The hydrophone signal was either detected via a digital scope or via a Lock-In amplifier.

Fig. 3
Fig. 3

(a) Trace of PA signal stemming from a carbon fiber recorded with a digital scope. (b) Corresponding FFT.

Fig. 4
Fig. 4

Luminescence spectra of (a) Rhodamine B dissolved in water, (b) Rhodamine B dyed PE spheres, (c) silicon exposed to approximately 5.3 × 1015W/m2.

Fig. 5
Fig. 5

PA signal as a function of the incident laser peak intensity of (a) a carbon fiber and (c) silicon. PA und luminescence (LUM) signal as a function of the incident laser peak intensity of (b) Rhodamine B dissolved in water and (d) Rhodamine B dyed microspheres. Red crosses represent the PA signal and the circles the luminescence intensity. Signal amplitudes for PA and LUM were normalized to fit the same curve fitting (solid lines).

Fig. 6
Fig. 6

Two-dimensional PA image of a 100µm PE sphere containing Rhodamine B. (a) pure PA signal, (b) pure luminescence signal, (c) PA signal and luminescence signal. The sphere was embedded in a transparent resin. Photoacoustic signal generation was due to two-photon absorption.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A 1 I 0 (1 e αz ).
A 2 I 0 2 ( βz βz I 0 +1 ).
A 1,2 I 0 ( 1 e αz + β α I 0 ( 1 e αz ) 1+ β α I 0 ( 1 e αz ) ).
E=P/f,
I(r,t)= I 0 e 2 ( r w ) 2 e ln(2) ( t τ ) 2 .
E= I 0 π 3/2 2 ln(2) τ w 2 .
p 0 ΓA.
p(t)= p ¯ g(t),

Metrics