Abstract

A micromirror array composed of 2048 silicon micromirrors measuring 200 × 100 μm2 and tilting by 25° was developed as a reconfigurable slit mask for multi-object spectroscopy (MOS) in astronomy. The fill factor, contrast, and mirror deformation at both room and cryogenic temperatures were investigated. Contrast was measured using an optical setup that mimics a MOS instrument, and mirror deformation was characterized using a Twyman-Green interferometer. The results indicate that the array exhibited a fill factor of 82%, a contrast ratio of 1000:1, and surface mirror deformations of 8 nm and 27 nm for mirrors tilted at 298 K and 162 K, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Hearnshaw, “Astronomical spectrographs and their history,” (Cambridge University Press, 2009), http://www.cambridge.org/9780521882576 .
  2. W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
    [CrossRef]
  3. P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
    [CrossRef]
  4. M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
    [CrossRef]
  5. J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
    [CrossRef]
  6. J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
    [CrossRef]
  7. S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
    [CrossRef]
  8. R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
    [CrossRef]
  9. J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
    [CrossRef]
  10. F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
    [CrossRef]
  11. M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
    [CrossRef]
  12. A. M. Michalicek and V. M. Bright, “Flip-chip fabrication of advanced micromirror arrays,” Sens. Act. A95, 15267 (2002).
  13. F. Zamkotsian, J. Gautier, and P. Lanzoni, “Characterization of MOEMS devices for the instrumentation of next generation space telescope,” Proc. SPIE4980, 324 (2003).
    [CrossRef]
  14. F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
    [CrossRef]

2013 (1)

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

2012 (1)

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

2011 (2)

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

2010 (1)

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

2008 (3)

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

2007 (1)

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

2006 (1)

J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
[CrossRef]

2004 (1)

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

2003 (1)

F. Zamkotsian, J. Gautier, and P. Lanzoni, “Characterization of MOEMS devices for the instrumentation of next generation space telescope,” Proc. SPIE4980, 324 (2003).
[CrossRef]

2002 (1)

A. M. Michalicek and V. M. Bright, “Flip-chip fabrication of advanced micromirror arrays,” Sens. Act. A95, 15267 (2002).

Barette, R.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

Bierden, P.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

Bifano, T. G.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

Bonacina, L.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Bright, V. M.

A. M. Michalicek and V. M. Bright, “Flip-chip fabrication of advanced micromirror arrays,” Sens. Act. A95, 15267 (2002).

Brown, A. D.

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

Brzeski, J.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Canonica, M. D.

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

Colless, M.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Cook, T.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

Cornelissen, S.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

Cotton, C. T.

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

De Rooij, N.

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

de Rooij, N. F.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Duvet, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

Extermann, J.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Fabron, C.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

Garipov, G. K.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Gautier, J.

F. Zamkotsian, J. Gautier, and P. Lanzoni, “Characterization of MOEMS devices for the instrumentation of next generation space telescope,” Proc. SPIE4980, 324 (2003).
[CrossRef]

Gilbert, J.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Giriens, L.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Goodwin, M.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Grassi, E.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

Green, R. F.

J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
[CrossRef]

Greenhouse, M. A.

J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
[CrossRef]

Hammond, P.

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

Hearnshaw, J. B.

J. B. Hearnshaw, “Astronomical spectrographs and their history,” (Cambridge University Press, 2009), http://www.cambridge.org/9780521882576 .

Henein, S.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Jeon, J. A.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Jutzi, F.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Kearney, K. J.

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

Khrenov, B. A.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Kim, J. E.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Kim, M.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Kim, Y. K.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Kiselev, D.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Kutyrev, A. S.

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

Lani, S.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Lanzoni, P.

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

F. Zamkotsian, J. Gautier, and P. Lanzoni, “Characterization of MOEMS devices for the instrumentation of next generation space telescope,” Proc. SPIE4980, 324 (2003).
[CrossRef]

Lee, C.-H.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Lee, J.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Levine, B. M.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

Li, M. J.

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

Lisowski, L.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

MacKenty, J. W.

J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
[CrossRef]

Marchand, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

Meyer, R. D.

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

Michalicek, A. M.

A. M. Michalicek and V. M. Bright, “Flip-chip fabrication of advanced micromirror arrays,” Sens. Act. A95, 15267 (2002).

Mikula, V.

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

Miziarski, S.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Moseley, H. S.

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

Muller, R.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Na, G. W.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Nam, S.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Nenadl, O.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Ninkov, Z.

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

Noell, W.

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

O’Hare, A.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Ohl, R. G.

J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
[CrossRef]

Onillon, E.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Park, I. H.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Park, J. H.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Park, Y.-S.

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Saunders, W.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Schwab, P.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Smith, G.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Spanoudakis, P.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Staszak, N.

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

Statt, B. D.

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

Stewart, J. B.

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

Tangen, K.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

Theurillat, P.

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

Valenziano, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

Waldis, S.

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

Weber, S. M.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Wolf, J.-P.

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Zamkotsian, F.

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

F. Zamkotsian, J. Gautier, and P. Lanzoni, “Characterization of MOEMS devices for the instrumentation of next generation space telescope,” Proc. SPIE4980, 324 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

M. D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell, and N. De Rooij, “The two-dimensional array of 2048 tilting micromirrors for astronomical spectroscopy,” J. Micromech. Microeng.23, 055009 (2013).
[CrossRef]

Optics Express (1)

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C.-H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y.-S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects, Optics Express, 16, 20249–20257, (2008).
[CrossRef]

Proc. SPIE (8)

R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, and B. D. Statt, “RITMOS: A micromirror-based multi-object spectrometer,” Proc. SPIE5492, 200 (2004).
[CrossRef]

J. W. MacKenty, R. G. Ohl, M. A. Greenhouse, and R. F. Green, “Commissioning of the IRMOS MEMS spectrometer,” Proc. SPIE6269, 626915 (2006).
[CrossRef]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048 × 1080 DMD, Proc. SPIE7932, 79320A (2011).
[CrossRef]

W. Saunders, G. Smith, J. Gilbert, R. Muller, M. Goodwin, N. Staszak, J. Brzeski, S. Miziarski, and M. Colless, “MOHAWK: a 4000-fiber positioner for DESpec,” Proc. SPIE8486, 84464W (2012).
[CrossRef]

P. Spanoudakis, L. Giriens, S. Henein, L. Lisowski, A. O’Hare, E. Onillon, P. Schwab, and P. Theurillat, “Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: Integration and tests,” Proc. SPIE7018, 70180I (2008).
[CrossRef]

M. J. Li, A. D. Brown, A. S. Kutyrev, H. S. Moseley, and V. Mikula, “JWST microshutter array system and beyond,” Proc. SPIE7594, 75940N (2010).
[CrossRef]

F. Zamkotsian, J. Gautier, and P. Lanzoni, “Characterization of MOEMS devices for the instrumentation of next generation space telescope,” Proc. SPIE4980, 324 (2003).
[CrossRef]

F. Zamkotsian, E. Grassi, S. Waldis, R. Barette, P. Lanzoni, C. Fabron, W. Noell, and N. De Rooij, “Interferometric characterization of MOEMS devices in cryogenic environment for astronomical instrumentation,” Proc. SPIE6884, 68840D (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

S. M. Weber, L. Bonacina, W. Noell, D. Kiselev, J. Extermann, F. Jutzi, S. Lani, O. Nenadl, J.-P. Wolf, and N. F. de Rooij, “Design, simulation, fabrication, packaging, and characterization of a MEMS-based mirror array for femtosecond pulse-shaping in phase and amplitude, Rev. Sci. Instrum., 82, 075106, (2011).
[CrossRef]

Sens. Act. A (2)

J. B. Stewart, T. G. Bifano, S. Cornelissen, P. Bierden, B. M. Levine, and T. Cook, “Design and development of a 331-segment tip-tilt-piston mirror array for space-based adaptive optics,” Sens. Act. A, 135, 230–238, (2007).
[CrossRef]

A. M. Michalicek and V. M. Bright, “Flip-chip fabrication of advanced micromirror arrays,” Sens. Act. A95, 15267 (2002).

Other (1)

J. B. Hearnshaw, “Astronomical spectrographs and their history,” (Cambridge University Press, 2009), http://www.cambridge.org/9780521882576 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A micromirror cell has a system of beams achieving a precise tilt angle after actuation. (b) At rest, when no voltage was applied, the micromirror was held in a flat position. (c–d) At the pull-in voltage, the micromirror was tilted towards its electrode. During this motion, the micromirror first touched its stopper beam, and subsequently its landing pads.

Fig. 2
Fig. 2

MMA of 2048 micromirrors (32 × 64) measuring 200 × 100 × 10 μm3. (a) Scanning Electron Microscope (SEM) image of the surface of the mirrors at the end of the fabrication. (b) Packaged and wirebonded MMA.

Fig. 3
Fig. 3

Optical setup for the contrast characterization of a micromirror. The polychromatic light source (S1) and lens (L1) simulated an astronomical object; the lens (L2) and the input pupil (P1) simulated the telescope; the lens (L3), output pupil (P2) and the other lens (L4) simulated the spectrograph. The pupils were imaged on the detector (D2).

Fig. 4
Fig. 4

The contrast was obtained by focusing a 200 μm diameter light source on 3 lines of 32 micromirrors, and subsequently measuring the integrated intensity over the micromirror surface for the rest and tilted states. (a) 3 tilted lines of micromirrors illuminated by an external source and the 200 μm diameter light source aimed at the micromirror. (b) Intensity measurement when the 3 lines of micromirrors were tilted (ON state) for an exposure time of 0.1 s. (c) Intensity measurement when the 3 lines of micromirrors were at rest (OFF state) for an exposure time of 10 s. In this case, the measured light comes from reflection of the micromirror edges and of the electrode.

Fig. 5
Fig. 5

Optical setup for the characterization of the micromirror surface deformation at RT and cryogenic temperatures. The MMA was placed in a cryogenic chamber, which was mounted in front of a Twyman-Green interferometer. The use of a compensating plate in the reference arm of the interferometer enabled measurements with nanometer resolution.

Fig. 6
Fig. 6

Interferometric observation of the lines of micromirrors before and during the cryogenic experiments. During this experiment, the cryogenic chamber was rotated by a value equal to the micromirror tilt angle. Therefore, the tilted micromirrors appear white (ON state), while the micromirrors at rest appear black (OFF state). Due to low coherence light, only one line of micromirror could be measured at once. Actuation of the micromirrors was successfully demonstrated at 162 K. (a) Temperature: RT, Voltage: 130 V. (b) Temperature: 162 K, Voltage: 0 V. (c) Temperature: 162 K, Voltage: 130 V. (d) Temperature: 162 K, Voltage: 148 V.

Fig. 7
Fig. 7

Micromirror surface deformation measured by phase-shifting interferometry before, during, and after the cryogenic experiment. The silicon micromirror measuring 200 × 100 × 10 μm3 was coated with 10 nm Ti and 50 nm Au, and was in its tilted position. (a) PTV deformation of 8 nm at RT before cooling. (b) PTV deformation of 27 nm at 162 K. (c) PTV deformation of 10 nm at RT after cooling.

Tables (1)

Tables Icon

Table 1 PTV and root-mean-square (RMS) micromirror surface deformation before, during, and after the cryogenic test at 162 K. The measurements before and during the cryogenic test were made on the same micromirror. After the cryogenic test, a comparable micromirror was measured because the line previously observed did not fully tilt.

Metrics