Abstract

We report on the modeling of an electrically pumped nonlinear source for spontaneous parametric down-conversion in an AlGaAs single-sided Bragg waveguide. Laser emission from InAs quantum dots embedded in the waveguide core is designed to excite a Bragg pump mode at 950 nm. This mode is phase matched with two cross-polarized total-internal-reflection fundamental signal and idler modes around 1900 nm. Besides numerically evaluating the source efficiency, we discuss the crucial role played by the quantum dots in the practical implementation of the phase-matching condition along with the tuning capabilities of this promising active device.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).
  2. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).
  3. M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).
  4. B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in Proceedings of OSA/CLEO 2011, paper PDPA3 (2011).
  5. V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
    [CrossRef]
  6. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).
  7. M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011).
    [CrossRef] [PubMed]
  8. X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
    [CrossRef]
  9. J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
    [CrossRef]
  10. A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
    [CrossRef]
  11. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
    [CrossRef]
  12. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express14(3), 1243–1252 (2006).
    [CrossRef] [PubMed]
  13. A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
    [CrossRef] [PubMed]
  14. P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B29(6), 1367–1375 (2012).
    [CrossRef]
  15. J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996).
    [CrossRef]
  16. J. M. Gérard, “InAs quantum boxes: active probes for air/GaAs photonic bandgap microstructures,” in « Quantum Optics in Wavelength scale Structures », J. Rarity and C. Weisbuch eds, NATO ASI series E324, 219, Kluwer, Dordrecht (1996).
  17. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
    [CrossRef]
  18. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
    [CrossRef]
  19. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
    [CrossRef]
  20. J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot laser,” C. R. Phys.4(6), 611–619 (2003).
    [CrossRef]
  21. D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
    [CrossRef]
  22. Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
    [CrossRef]
  23. M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
    [CrossRef]
  24. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron.45(6), 646–653 (2009).
    [CrossRef]
  25. Documentation, http://www.nextnano.de/nextnano3 .
  26. D. L. Huffaker and D. G. Deppe, “Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett.11(8), 934–936 (1999).
    [CrossRef]
  27. C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12(25), 6165–6177 (2004).
    [CrossRef] [PubMed]

2013 (1)

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

2012 (4)

P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B29(6), 1367–1375 (2012).
[CrossRef]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

2011 (2)

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

2009 (3)

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron.45(6), 646–653 (2009).
[CrossRef]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

2007 (2)

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

2006 (4)

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express14(3), 1243–1252 (2006).
[CrossRef] [PubMed]

2004 (3)

C.-P. Yu and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express12(25), 6165–6177 (2004).
[CrossRef] [PubMed]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

2003 (1)

J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot laser,” C. R. Phys.4(6), 611–619 (2003).
[CrossRef]

1999 (1)

D. L. Huffaker and D. G. Deppe, “Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett.11(8), 934–936 (1999).
[CrossRef]

1998 (1)

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

1996 (2)

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Abolghasem, P.

P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B29(6), 1367–1375 (2012).
[CrossRef]

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron.45(6), 646–653 (2009).
[CrossRef]

Adams, R. W.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Albert, F.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Amann, M. C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

Amann, M.-C.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Anantathanasarn, S.

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

Anders, M.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Andronico, A.

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Bai, Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

Bandyopadhyay, N.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

Barbarin, Y.

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

Barrier, D.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Belkin, M. A.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Bente, E. A. J. M.

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

Berger, V.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

Bimberg, D.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Boehm, G.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

Bravetti, P.

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

Cabrol, O.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996).
[CrossRef]

Calligaro, M.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

Cataluna, M. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

Chang, H.-C.

Charles, W. O.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Chen, J. X.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Cheng, L. W.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Choa, F.-S.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Claudon, J.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Costard, E.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Coudreau, T.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

De Rossi, A.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

Deppe, D. G.

D. L. Huffaker and D. G. Deppe, “Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett.11(8), 934–936 (1999).
[CrossRef]

Ducci, S.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

Eckstein, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

Favero, I.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Fejer, M. M.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

Filloux, P.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

Fiol, G.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Fiore, A.

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

Flynn, M. B.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

Forchel, A.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot laser,” C. R. Phys.4(6), 611–619 (2003).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Galopin, E.

Gérard, J. M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Ghiglieno, F.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Gilbert, K.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Gmachl, C.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Grasse, C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Grosse, P.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Guillotel, E.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Harris, J. S.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

Helmy, A. S.

Höfling, S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Huffaker, D. L.

D. L. Huffaker and D. G. Deppe, “Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett.11(8), 934–936 (1999).
[CrossRef]

Jang, M.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Kamp, M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Keller, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

Kondo, T.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Kotlyar, M. V.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

Kovsh, A. R.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Krauss, T. F.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

Kuntz, M.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Kuszelewicz, R.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Lämmlin, M.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Lanco, L.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

Langer, F.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Langlois, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Ledentsov, N. N.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Lemaître, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

Leo, G.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett.36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Lin, A. C.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

Lu, Q. Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

Malik, N. S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Manin, L.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Manquest, C.

Marzin, J. Y.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Matsushita, T.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Meuer, C.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Milman, P.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

Moore, S. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

Munsch, M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Nagle, J.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

Narita, W.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Nötzel, R.

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

O’Faolain, L.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

Oei, Y. S.

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

Ohta, I.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Orieux, A.

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

Ortiz, V.

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

Ota, J.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Pieczarka, M. M.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Ravaro, M.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Razeghi, M.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

Reithmaier, J. P.

J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot laser,” C. R. Phys.4(6), 611–619 (2003).
[CrossRef]

Reitzenstein, S.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Ricolleau, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

Rivera, T.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Rosencher, E.

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

Savanier, M.

Scaccabarozzi, L.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

Schlereth, T.

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

Sermage, B.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996).
[CrossRef]

Slivken, S.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

Smit, M. K.

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

Thierry-Mieg, V.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

Troccoli, M.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Vijayraghavan, K.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

Vinter, B.

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

Vizbaras, A.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Wang, X.

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Yu, C.-P.

Yu, X.

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

Appl. Phys. Lett. (7)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation,” Appl. Phys. Lett.101(251121), 1–4 (2012).

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett.100(251104), 1–4 (2012).

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett.94(171110), 1–3 (2009).

S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett.84(16), 2974–2976 (2004).
[CrossRef]

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett.68(22), 3123 (1996).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449 (1996).
[CrossRef]

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse, J. M. Gérard, F. Albert, F. Langer, T. Schlereth, M. M. Pieczarka, S. Höfling, M. Kamp, A. Forchel, and S. Reitzenstein, “Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes,” Appl. Phys. Lett.100(3), 031111 (2012).
[CrossRef]

C. R. Phys. (1)

J. P. Reithmaier and A. Forchel, “Recent advances in semiconductor quantum-dot laser,” C. R. Phys.4(6), 611–619 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron.45(6), 646–653 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. L. Huffaker and D. G. Deppe, “Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett.11(8), 934–936 (1999).
[CrossRef]

Y. Barbarin, S. Anantathanasarn, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and R. Nötzel, “1.55 µm range InAs-InP (100) quantum dot Fabry-Pérot and ring lasers using deeply etched ridge waveguides,” IEEE Photon. Technol. Lett.18, 2644 (2006).
[CrossRef]

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett.18(17), 1861–1863 (2006).
[CrossRef]

J. Cryst. Growth (1)

X. Yu, L. Scaccabarozzi, A. C. Lin, M. M. Fejer, and J. S. Harris, “Growth of GaAs with orientation-patterned structures for nonlinear optics,” J. Cryst. Growth301–302, 163–167 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55µm,” Jpn. J. Appl. Phys.48(4), 04C110 (2009).
[CrossRef]

Nat. Photonics (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Nature (1)

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature391(6666), 463–466 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature,” Phys. Rev. Lett.110(16), 160502 (2013).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lämmlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A203(14), 3523–3532 (2006).
[CrossRef]

Proc. SPIE (1)

M. A. Belkin, M. Jang, R. W. Adams, J. X. Chen, W. O. Charles, C. Gmachl, L. W. Cheng, F.-S. Choa, X. Wang, M. Troccoli, A. Vizbaras, M. Anders, C. Grasse, and M.-C. Amann, “InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range,” Proc. SPIE7953(795315), 1–7 (2011).

Semicond. Sci. Technol. (1)

A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol.19(10), L99–L102 (2004).
[CrossRef]

Other (3)

B. J. Bijlani, P. Abolghasem, A. Reijnders, and A. S. Helmy, “Intracavity parametric fluorescence in diode lasers,” in Proceedings of OSA/CLEO 2011, paper PDPA3 (2011).

J. M. Gérard, “InAs quantum boxes: active probes for air/GaAs photonic bandgap microstructures,” in « Quantum Optics in Wavelength scale Structures », J. Rarity and C. Weisbuch eds, NATO ASI series E324, 219, Kluwer, Dordrecht (1996).

Documentation, http://www.nextnano.de/nextnano3 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch and detailed description of the device. For each layer we indicate the material, its thickness, and doping type and levels. Layers 10 and 11 are repeated five times.

Fig. 2
Fig. 2

Profiles of the band structure (top panel) and electron/hole density (bottom panel) in the active region, at the transparency threshold. Z = 0 corresponds to the location of the QD layer and the layer numbering is the same as in Fig. 1. We plot the energies of the minima of the conduction band for the Γ (CB Γ) and X (CBX) points of the Brillouin zone, and of the maximum of the valence band. The quasi-Fermi levels for electrons and holes are marked by dashed lines.

Fig. 3
Fig. 3

Phase mismatch (Δn) chart as a function of pump wavelength (λP) and ridge width (wR).

Fig. 4
Fig. 4

Vertical cuts of the modes sustained by the waveguide at the pump wavelength λP = 950 nm. Solid line: Bragg mode; dashed line: TE0 mode; dash-dotted line: TE1 mode. The thin solid line is the refractive index profile. The mode overlaps with the GaAs layer are calculated to be: 1.78% (Bragg mode), 1.10% (TE0 mode), and 0.58% (TE1 mode).

Fig. 5
Fig. 5

Intensity maps of the modes involved in the SPDC process. From left to right: pump Bragg mode, generated TE00 mode, and generated TM00 mode. In the charts, only half profile is shown due to the modes’ symmetry with respect to the ridge center.

Fig. 6
Fig. 6

Generated wavelengths versus temperature for the device sketched in Fig. 1 and emitting at λL = 950 nm for T = 23 o C.

Metrics