Abstract

We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. C (Solid St. Phys.)2, 1835–1846 (1969).
    [CrossRef]
  2. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys43, 2376–2382 (1972).
    [CrossRef]
  3. R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973).
    [CrossRef]
  4. P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975).
    [CrossRef]
  5. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
    [CrossRef]
  6. R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au and Cu,” Phys. Rev. B5, 3883–3893 (1972).
    [CrossRef]
  7. T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys.29, 410 (1964).
    [CrossRef]
  8. R. N. Gurzhi, “Mutual electron correlation in metal optics,” Sov. Phys. JETP8, 673 (1959).
  9. J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B13, 673–685 (1976).
    [CrossRef]
  10. C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
    [CrossRef]
  11. X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).
  12. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).
  13. G. Baffou and R. Quidant, “Thermo-Plasmonics: using metallic nanostructures as nanosources of heat,” Laser Photon. Rev.7, 171–187 (2013).
    [CrossRef]
  14. M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
    [CrossRef]
  15. B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
    [CrossRef]
  16. J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
    [CrossRef]
  17. R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au,” Phys. Rev. B16, 5277–5284 (1977).
    [CrossRef]
  18. G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981).
    [CrossRef]
  19. S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor,” J. Lightwave Technol.21, 805 (2003).
    [CrossRef]
  20. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
    [CrossRef] [PubMed]
  21. A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
    [CrossRef]
  22. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005).
    [CrossRef]
  23. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon polariton waves,” J. Lightwave Technol.24, 4391–4409 (2006).
    [CrossRef]
  24. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009).
    [CrossRef]
  25. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
    [CrossRef]
  26. A. Pitilakis and E. E. Kriezis, “Longitudinal 2×2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides,” J. Lightwave Technol.29, 2636–2646 (2011).
    [CrossRef]
  27. J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
    [CrossRef]
  28. J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optics components based on dielectric loaded surface plasmon polariton waveguides,” Scientific report3, 1803 (2013).
  29. H. Fan and P. Berini, “Thermo-optic characterization of long-range surface plasmon in Cytop,” Appl. Opt.52, 162–170 (2013).
    [CrossRef] [PubMed]
  30. C. Kittel, Introduction to solid state physics, 8th ed. (John Wiley and Sons, 2005).
  31. M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
    [CrossRef]
  32. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
    [CrossRef]
  33. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).
  34. N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials (Springer, New-York, 2008).
  35. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, 1999).
  36. J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
    [CrossRef]
  37. J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).
  38. G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
    [CrossRef]
  39. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, Philadelphia, 2007).
  40. M. J. Latif, Heat Conduction, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2009), pp377.
  41. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944 (1999).
    [CrossRef]
  42. D. Canchal-Arias and P. Dawson, “Measurement and interpretation of mid-infrared properties of single crystal and polycrystalline gold,” Surf. Sci.577, 95–111 (2005).
    [CrossRef]
  43. P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  44. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
    [CrossRef]

2013 (4)

G. Baffou and R. Quidant, “Thermo-Plasmonics: using metallic nanostructures as nanosources of heat,” Laser Photon. Rev.7, 171–187 (2013).
[CrossRef]

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optics components based on dielectric loaded surface plasmon polariton waveguides,” Scientific report3, 1803 (2013).

H. Fan and P. Berini, “Thermo-optic characterization of long-range surface plasmon in Cytop,” Appl. Opt.52, 162–170 (2013).
[CrossRef] [PubMed]

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

2012 (3)

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

2011 (3)

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

A. Pitilakis and E. E. Kriezis, “Longitudinal 2×2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides,” J. Lightwave Technol.29, 2636–2646 (2011).
[CrossRef]

2009 (2)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009).
[CrossRef]

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).

2008 (3)

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
[CrossRef]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

2007 (1)

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

2006 (3)

G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon polariton waves,” J. Lightwave Technol.24, 4391–4409 (2006).
[CrossRef]

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

2005 (4)

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005).
[CrossRef]

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of mid-infrared properties of single crystal and polycrystalline gold,” Surf. Sci.577, 95–111 (2005).
[CrossRef]

2003 (1)

2000 (1)

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

1999 (1)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944 (1999).
[CrossRef]

1981 (1)

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981).
[CrossRef]

1977 (1)

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au,” Phys. Rev. B16, 5277–5284 (1977).
[CrossRef]

1976 (2)

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B13, 673–685 (1976).
[CrossRef]

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
[CrossRef]

1975 (1)

P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975).
[CrossRef]

1973 (1)

R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973).
[CrossRef]

1972 (3)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys43, 2376–2382 (1972).
[CrossRef]

R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au and Cu,” Phys. Rev. B5, 3883–3893 (1972).
[CrossRef]

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

1969 (1)

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. C (Solid St. Phys.)2, 1835–1846 (1969).
[CrossRef]

1964 (1)

T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys.29, 410 (1964).
[CrossRef]

1959 (1)

R. N. Gurzhi, “Mutual electron correlation in metal optics,” Sov. Phys. JETP8, 673 (1959).

Albrektsen, O.

Antonangeli, F.

R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973).
[CrossRef]

Arakawa, E. T.

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-Plasmonics: using metallic nanostructures as nanosources of heat,” Laser Photon. Rev.7, 171–187 (2013).
[CrossRef]

Beach, R. T.

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au,” Phys. Rev. B16, 5277–5284 (1977).
[CrossRef]

Berini, P.

Bernardin, T.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

Boissière, C.

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Bouillard, J.-S. G.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

Bozhevolnyi, S. I.

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optics components based on dielectric loaded surface plasmon polariton waveguides,” Scientific report3, 1803 (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005).
[CrossRef]

Burov, E.

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Canchal-Arias, D.

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of mid-infrared properties of single crystal and polycrystalline gold,” Surf. Sci.577, 95–111 (2005).
[CrossRef]

Chaneac, C.

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Chen, G.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944 (1999).
[CrossRef]

Chen, Q.-Y.

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

Chenot, S.

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

Christy, R. W.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981).
[CrossRef]

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au,” Phys. Rev. B16, 5277–5284 (1977).
[CrossRef]

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Colas des Francs, G.

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Dahotre, N. B.

N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials (Springer, New-York, 2008).

Dawson, P.

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of mid-infrared properties of single crystal and polycrystalline gold,” Surf. Sci.577, 95–111 (2005).
[CrossRef]

Dereux, A.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Dickson, W.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Durupthy, O.

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Fan, H.

Fatome, J.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

Ferrell, T. L.

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

Finot, C.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

Fisson, S.

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

Gagnon, G.

Gallas, B.

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Gosciniak, J.

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optics components based on dielectric loaded surface plasmon polariton waveguides,” Scientific report3, 1803 (2013).

Goudonnet, J. P.

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Grassano, U. M.

R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973).
[CrossRef]

Guerrisi, M.

P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975).
[CrossRef]

Gurzhi, R. N.

R. N. Gurzhi, “Mutual electron correlation in metal optics,” Sov. Phys. JETP8, 673 (1959).

Guyot-Sionnest, P.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).

Harimkar, S. P.

N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials (Springer, New-York, 2008).

Hassan, K.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

Hassanein, A.

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Holstein, T.

T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys.29, 410 (1964).
[CrossRef]

Hu, A.-M.

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

Hui, P.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944 (1999).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, 1999).

Jonhson, P. B.

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Jordan, P. C.

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

Ju, J. J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Kaya, S.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

Kim, J. T.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Kim, M.-S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to solid state physics, 8th ed. (John Wiley and Sons, 2005).

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Kriezis, E. E.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

A. Pitilakis and E. E. Kriezis, “Longitudinal 2×2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides,” J. Lightwave Technol.29, 2636–2646 (2011).
[CrossRef]

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009).
[CrossRef]

Lahoud, N.

Latif, M. J.

M. J. Latif, Heat Conduction, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2009), pp377.

Lawrence, W. E.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981).
[CrossRef]

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Lengkeek, H. P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005).
[CrossRef]

Lereu, A. L.

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

LeVeque, R. J.

R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, Philadelphia, 2007).

Lima, A. M. N.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
[CrossRef]

Liu, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).

Lynch, D. W.

R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au and Cu,” Phys. Rev. B5, 3883–3893 (1972).
[CrossRef]

Markey, L.

Mattiussi, G.

McKay, J. A.

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B13, 673–685 (1976).
[CrossRef]

Millot, G.

Miloshevsky, G. V.

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

Moreira, C. S.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
[CrossRef]

Neff, H.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
[CrossRef]

Nielsen, M. G.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005).
[CrossRef]

O’Connor, D. P.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

Ozdemir, S. K.

Palpant, B.

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

Park, H. Y.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Park, S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

Parkins, G. R.

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981).
[CrossRef]

Partenskii, M. B.

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

Passian, A.

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

Pastouret, A.

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Pells, G. P.

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. C (Solid St. Phys.)2, 1835–1846 (1969).
[CrossRef]

Pelton, M.

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).

Pitilakis, A.

Pitilakis, O.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

Pleros, N.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

Quidant, R.

G. Baffou and R. Quidant, “Thermo-Plasmonics: using metallic nanostructures as nanosources of heat,” Laser Photon. Rev.7, 171–187 (2013).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).

Rashidi-Huyeh, M.

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

Rayne, J. A.

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B13, 673–685 (1976).
[CrossRef]

Rosei, R.

P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975).
[CrossRef]

R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973).
[CrossRef]

R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au and Cu,” Phys. Rev. B5, 3883–3893 (1972).
[CrossRef]

Saviot, L.

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Shiga, M.

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. C (Solid St. Phys.)2, 1835–1846 (1969).
[CrossRef]

Sizyuk, V. A.

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

Steiberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Thirstrup, C.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
[CrossRef]

Thundat, T.

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

Tsilipakos, O.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009).
[CrossRef]

Turhan-Sayan, G.

Ujihara, K.

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys43, 2376–2382 (1972).
[CrossRef]

van Kampen, F. F.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
[CrossRef]

van Went, C. G.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Wig, A.

Winsemius, P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
[CrossRef]

P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975).
[CrossRef]

Wu, P.-Q.

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

Wurtz, G. A.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

Xue, X.-J.

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

Yioultsis, T. V.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009).
[CrossRef]

Zayats, A. V.

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

Zhang, T.

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

Zhang, X.-Y.

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

Ann. Phys. (1)

T. Holstein, “Theory of transport phenomena in an electron-phonon gas,” Ann. Phys.29, 410 (1964).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944 (1999).
[CrossRef]

B. Palpant, M. Rashidi-Huyeh, B. Gallas, S. Chenot, and S. Fisson, “Highly dispersive thermo-optical properties of gold nanoparticles,” Appl. Phys. Lett.90, 223 105 (2007).
[CrossRef]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154 101 (2005).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

J. Appl. Phys (1)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys43, 2376–2382 (1972).
[CrossRef]

J. Appl. Phys. (2)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093 109 (2009).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103, 073 713 (2008).
[CrossRef]

J. Comp. Phys. (1)

G. V. Miloshevsky, V. A. Sizyuk, M. B. Partenskii, A. Hassanein, and P. C. Jordan, “Application of finite difference methods to membrane-mediated protein interactions and to heat and magnetic field diffusion in plasmas,” J. Comp. Phys.212, 25–51 (2006).
[CrossRef]

J. Lightwave Technol. (4)

J. Nanosci. Nanotechnol. (1)

X.-Y. Zhang, T. Zhang, A.-M. Hu, X.-J. Xue, P.-Q. Wu, and Q.-Y. Chen, “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” J. Nanosci. Nanotechnol.11, 10 520–10 524 (2011).

J. Phys. C (Solid St. Phys.) (1)

G. P. Pells and M. Shiga, “The optical properties of copper and gold as a function of temperature,” J. Phys. C (Solid St. Phys.)2, 1835–1846 (1969).
[CrossRef]

J. Phys. F: Metal Phys. (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Metal Phys.6, 1583–1606 (1976).
[CrossRef]

Laser Photon. Rev. (1)

G. Baffou and R. Quidant, “Thermo-Plasmonics: using metallic nanostructures as nanosources of heat,” Laser Photon. Rev.7, 171–187 (2013).
[CrossRef]

Mater. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008).
[CrossRef]

Nanolett. (1)

J.-S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low temperature plasmonics of metallic nanosctructures,” Nanolett.12, 1561–1565 (2012).
[CrossRef]

Opt. Commun. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244, 455–459 (2005).
[CrossRef]

Opt. Express (1)

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27 636–27 649 (2012).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (8)

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

R. T. Beach and R. W. Christy, “Electron-electron scattering in the intraband optical conductivity of Cu, Ag and Au,” Phys. Rev. B16, 5277–5284 (1977).
[CrossRef]

G. R. Parkins, W. E. Lawrence, and R. W. Christy, “Intraband optical condutuctivity σ(ω, T) of Cu, Ag, Au: Contribution from electron-electron scattering,” Phys. Rev. B23, 6408–6416 (1981).
[CrossRef]

M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B79, 035 418 (2009).

J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metals,” Phys. Rev. B13, 673–685 (1976).
[CrossRef]

R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au and Cu,” Phys. Rev. B5, 3883–3893 (1972).
[CrossRef]

P. Winsemius, M. Guerrisi, and R. Rosei, “Splitting of the interband absorption edge in Au: Temperature dependence,” Phys. Rev. B12, 4570–4572 (1975).
[CrossRef]

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E (1)

J.-C. Weeber, A. Dereux, C. Girard, G. Colas des Francs, J. R. Krenn, and J. P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E62, 7381–7388 (2000).
[CrossRef]

Scientific report (1)

J. Gosciniak and S. I. Bozhevolnyi, “Performance of thermo-optics components based on dielectric loaded surface plasmon polariton waveguides,” Scientific report3, 1803 (2013).

Sensor and Actuators B (1)

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at gold-water interface,” Sensor and Actuators B134, 854–862 (2008).
[CrossRef]

Sov. Phys. JETP (1)

R. N. Gurzhi, “Mutual electron correlation in metal optics,” Sov. Phys. JETP8, 673 (1959).

Surf. Sci. (2)

R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci.37, 689–699 (1973).
[CrossRef]

D. Canchal-Arias and P. Dawson, “Measurement and interpretation of mid-infrared properties of single crystal and polycrystalline gold,” Surf. Sci.577, 95–111 (2005).
[CrossRef]

Other (7)

R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, Philadelphia, 2007).

M. J. Latif, Heat Conduction, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2009), pp377.

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Submitted for publication, (2013).

C. Kittel, Introduction to solid state physics, 8th ed. (John Wiley and Sons, 2005).

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).

N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials (Springer, New-York, 2008).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic view of the experimental set-up. (b) Bird-eye view of the input and output grating couplers implemented at the surface of a thin gold film. (c) Spectrum of the incoherent light-source used for the excitation of the SPP modes. (d) Typical insertion losses for SPP signal fiber-to-fiber transmission.

Fig. 2
Fig. 2

(a) Scanning electron microscope image of the grating couplers showing the respective location of the input infrared and visible pump spot (scale bar=100μm). (b) (resp.(c)) Leakage radiation image of the SPP jet generated by the input grating coupler with the pump spot off (resp. on). (d) Solid line: Cross-cut of the SPP jet. The jet can be approximated by a gaussian profile (dashed line) with a waist of 9.5μm. (e) Solid-line: Cross-cut of the intensity distribution of the pump spot. The pump spot can be approximated by a gaussian beam (dashed line) with a waist of 16μm.

Fig. 3
Fig. 3

(a) Solid-line: SPP signal modulation recorded with the IR photo-diode in the case of a photo-thermal excitation with a cw illumination (100mW) modulated at a frequency of 1kHz (duty-cycle=50%). Dashed-line: control signal of the visible photo-diode showing the modulation of the cw pump beam. (b) Schematic view of the SPP jet propagation. The input (resp. output) grating coupler is located at x = xi (resp. x = xo).

Fig. 4
Fig. 4

(a) Schematic view of the system considered for the finite-difference computation of the temperature distribution along the gold thin film under photo-thermal excitation. The computation window is 100μm long (along r coordinate) and 50μm high (in the Z direction). A Neumann (N) boundary condition T r = 0 is applied at r = 0 due to the rotational symmetry around Z-axis whereas Dirichlet (D) conditions T = Troom are used for the three other boundaries. (b) Electric intensity distribution of the interference pattern created by the interaction of the normally incident and back-reflected pump beams. The power carried by the incident beam is 100mW. (c) Heat-source density distribution corresponding to the electric intensity distribution shown in (b). (d) Temperature in the thin film at the focal point of the gaussian beam as a function of time in the case of a 1kHz modulation frequency (duty-cycle=50%). (e) Spatial temperature distribution at the surface of the thin film at t=500μs.

Fig. 5
Fig. 5

(a) Comparison of the experimental modulation depth (open circles) and the modulation depth computed using either our values for gold TOC (open squares) or the temperature-dependent refractive index given in ref. [11] (open diamonds). (b) (resp. (c) and (d)) Comparison of the experimental (solid line) and computed SPP modulation (dashed line) as a function of time in the case of a modulated cw excitation (1kHz, duty-cycle=50% for an incident power of 100mW (resp. 73mW and 59mW).

Fig. 6
Fig. 6

(a) Leakage radiation image showing the infrared plasmon jet and the nanosecond pump spot. (b) Optical image of the pump spot. The experimental intensity profile (solid line) of the pump beam is close to a gaussian beam (dashed line) with a waist of 50μm. (c) Oscilloscope trace showing the modulation of the SPP signal under excitation with the Q-switched nanosecond laser. The average power is 14mW. (d) Depth of modulation of the SPP signal as a function of the average power of the pulsed pump beam.

Fig. 7
Fig. 7

(a) Temperature of the thin film at the center of the pump beam in the case of an incident pulse with an average power of 12.2mW a repetition rate and a pulse duration corresponding to the experimental situation. The incident pulse reaches its maximum at t=5ns as shown on the inset displaying the power of the pulse as a function of time. (b) (resp. (c)) Comparison of the experimental (solid line) and computed (dashed line) SPP photo-thermal modulation for an average incident power of 12.2mW (resp. 10.6mW). The computed profile accounts for the 2ns rise time of the infrared photo-diode response. (d) Comparison of the experimental (dashed line) depth of modulation and the depth of modulation (solid line) computed using our gold TOC values.

Tables (1)

Tables Icon

Table 1 Comparison of the thermo-optical coefficients of gold extracted from the measured SPP depth of modulation and from the temperature-dependent Drude model for gold given in ref. [11]. The results of ref. [14] are obtained from a linear extrapolation (see text).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E h ( x , y ) = E h ( x i , y ) exp ( i Φ ( x , x i , y ) )
Φ ( x , x i , y ) = x i x k spp ( x , y ) d x
k spp ( x , y ) = k spp + T k spp ( T f ( x , y ) T room )
k spp ( x , y ) = k spp + T k spp ( T f ( x , y ) T room )
E h ( x o , y ) = E h ( x i , y ) exp ( i Φ ( x o , x i , y ) )
Φ ( x o , x i , y ) = ( k spp + i k spp ) ( x o x i ) + ( T k spp + i T k spp ) x i x o Δ T ( x , y ) d x
E h ( x o , y ) = E c ( x o , y ) × exp ( i T k spp x i x o Δ T ( x , y ) d x ) × exp ( T k spp x i x o Δ T ( x , y ) d x )
I h ( x o , y ) = I c ( x o , y ) exp ( 2 T k spp x i x o Δ T ( x , y ) d x )
Δ I I = ( I h ( x o , y ) I c ( x o , y ) ) d y I c ( x o , y ) d y
Δ I I = I c ( x o , y ) ( 2 T k spp x i x o Δ T ( x , y ) d x ) d y I c ( x o , y ) d y
I c ( x o , y ) = I 0 exp ( 2 k spp x o ) exp ( 2 y 2 w jet 2 )
| Δ I I | = 2 T k spp x i x o Δ T a v ( x ) d x
Δ T a v ( x ) = 2 π w jet 2 exp ( 2 y 2 w jet 2 ) Δ T ( x , y ) d y
k spp k 0 ε m ε d ε m + ε d
k spp = ( k spp ) ε d 3 / 2 k 0 2 ε m ( ε m ) 2
T k spp = ε d 3 / 2 k 0 κ 3 ( T n 3 n κ T κ )
T ε m = 2 κ T n + 2 n T κ
ρ C p T t = 1 r r ( r k T r ) + z ( k T z ) + Q ˜ E ( r , z )
Q ˜ E ( r , z ) = 1 2 ( J ( r , z ) . E * ( r , z ) )
Q ˜ E ( r , z ) = n κ k 0 Z 0 | E ( r , z ) | 2
k b k = 1 + 3 8 t + 7 α 5
L spp × T k spp = 8.0 × 10 4 K 1

Metrics