Abstract

We demonstrate a tri-wavelength laser generation from a Nd-doped calcium niobium gallium garnet disordered crystal waveguide. The laser threshold obtained was 83 mW of launched pumping laser corresponding to a slope efficiency of 5.1%. According to the laser spectrum, the output light was found to be a tri-wavelength laser, with wavelengths of 1058 nm, 1060 nm and 1064 nm, respectively. The stability of the output laser was investigated, which found that the output laser was a continuous laser.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).
  2. K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, and M. I. Timoshechkin, “Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser,” Appl. Opt.32(36), 7387–7390 (1993).
    [CrossRef] [PubMed]
  3. Q. N. Li, B. H. Feng, Z. Y. Wei, D. X. Zhang, D. H. Li, Z. G. Zhang, H. J. Zhang, and J. Y. Wang, “Continuous wave 935 nm Nd:CNGG laser at watt-level power,” Opt. Lett.33(3), 261–263 (2008).
    [CrossRef] [PubMed]
  4. Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
    [CrossRef]
  5. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett.33(16), 1872–1874 (2008).
    [CrossRef] [PubMed]
  6. A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
    [CrossRef]
  7. Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
    [CrossRef]
  8. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009).
    [CrossRef] [PubMed]
  9. B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
    [CrossRef]
  10. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express15(10), 6478–6483 (2007).
    [CrossRef] [PubMed]
  11. Y. Tan, Y. C. Jia, F. Chen, J. R. V. de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 nm and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B28(7), 1607–1610 (2011).
    [CrossRef]
  12. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
    [CrossRef] [PubMed]
  13. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  14. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett.37(5), 887–889 (2012).
    [CrossRef] [PubMed]
  15. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
    [CrossRef]
  16. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]
  17. J. I. Mackenzie, “Dielectric Solid-State Plannar Waveguide Laser: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
    [CrossRef]
  18. L. L. Wang and Y. G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci.256(8), 2616–2619 (2010).
    [CrossRef]
  19. C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
    [CrossRef]
  20. F. Chen and J. R. Vazquez de Aldana, “Optical Waveguides in Crystalline Dielectric Materials Produced by Femtosecond Laser Micromachining,” Laser Photonics Rev. DOI: .
    [CrossRef]
  21. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006).
    [CrossRef] [PubMed]
  22. Y. Ren, J. R. Vázquez de Aldana, F. Chen, and H. Zhang, “Channel waveguide lasers in Nd:LGS crystals,” Opt. Express21(5), 6503–6508 (2013).
    [CrossRef] [PubMed]
  23. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  24. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
    [CrossRef] [PubMed]
  25. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
    [CrossRef] [PubMed]
  26. L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
    [CrossRef]
  27. P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992).
    [CrossRef]
  28. M. Dinand and Ch. Schutte, “Theoretical Modeling of Relaxation Oscillation in Er-doped Waveguide lasers,” J. Lightwave Technol.13(1), 14–23 (1995).
    [CrossRef]
  29. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett.38(14), 2588–2591 (2013).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

2011 (4)

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Y. Tan, Y. C. Jia, F. Chen, J. R. V. de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 nm and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B28(7), 1607–1610 (2011).
[CrossRef]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

2010 (3)

L. L. Wang and Y. G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci.256(8), 2616–2619 (2010).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

2009 (2)

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009).
[CrossRef] [PubMed]

C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
[CrossRef]

2008 (4)

2007 (3)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express15(10), 6478–6483 (2007).
[CrossRef] [PubMed]

J. I. Mackenzie, “Dielectric Solid-State Plannar Waveguide Laser: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
[CrossRef]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

2006 (1)

2001 (1)

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

1996 (1)

1995 (1)

M. Dinand and Ch. Schutte, “Theoretical Modeling of Relaxation Oscillation in Er-doped Waveguide lasers,” J. Lightwave Technol.13(1), 14–23 (1995).
[CrossRef]

1993 (2)

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, and M. I. Timoshechkin, “Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser,” Appl. Opt.32(36), 7387–7390 (1993).
[CrossRef] [PubMed]

1992 (1)

P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992).
[CrossRef]

Agnesi, A.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Ams, M.

Aravazhi, S.

Beecher, S. J.

Bennion, I.

Brown, G.

Calmano, T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Chen, F.

Chicklis, E. P.

Cornacchia, F.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Creeden, D.

Davis, K. M.

de Aldana, J. R. V.

Dejnarowicz, D.

P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992).
[CrossRef]

Dell’Acqua, S.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Dinand, M.

M. Dinand and Ch. Schutte, “Theoretical Modeling of Relaxation Oscillation in Er-doped Waveguide lasers,” J. Lightwave Technol.13(1), 14–23 (1995).
[CrossRef]

Ebendorff-Heidepriem, H.

Es'kov, N. A.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Fang, X.

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Feng, B.

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

Feng, B. H.

Fredrich-Thornton, S. T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Fukuda, T.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, and M. I. Timoshechkin, “Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser,” Appl. Opt.32(36), 7387–7390 (1993).
[CrossRef] [PubMed]

García-Blanco, S. M.

Grivas, C.

Gross, S.

Guandalini, A.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Guo, S.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

He, J.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Herman, P.

Hirao, K.

Huang, H.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Huber, G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Jackson, S. D.

Jaque, D.

Jia, Y. C.

Jiang, M.

Jiang, M. H.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett.33(16), 1872–1874 (2008).
[CrossRef] [PubMed]

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Jiao, Y.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Kar, A. K.

Ketteridge, P. A.

Komiak, J. J.

Lancaster, D. G.

Li, D. H.

Li, Q.

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

Li, Q. N.

Li, X.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Liu, C.

C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
[CrossRef]

Liu, S.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Lu, Q.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Lu, Q. M.

Luo, H.

Ma, H.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric Solid-State Plannar Waveguide Laser: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
[CrossRef]

Marshall, G. D.

Mary, R.

McCarthy, J. C.

Mezentsev, V.

Miura, K.

Monro, T. M.

Mossakowska, A.

P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992).
[CrossRef]

Naito, K.

Nakai, S.

Nakatsuka, M.

Nejadmalayeri, A. H.

Nie, R.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Ohara, S.

Okhrimchuk, A.

Okuyama, T.

Osiko, V. V.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Paschke, A. G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Petermann, K.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Pollnau, M.

Qian, L. J.

Reali, G.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Ren, Y.

Rodenas, A.

Ródenas, A.

Sasaki, T.

Schunemann, P. G.

Schutte, Ch.

M. Dinand and Ch. Schutte, “Theoretical Modeling of Relaxation Oscillation in Er-doped Waveguide lasers,” J. Lightwave Technol.13(1), 14–23 (1995).
[CrossRef]

Shestakov, A.

Shi, Y.

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

Shi, Z.

Shi, Z. B.

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Shimamura, K.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Siebenmorgen, J.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Sobol', A. A.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Southward, T.

Sugimoto, N.

Sychev, S. A.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Szczepanski, P.

P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992).
[CrossRef]

Tan, Y.

Tang, D. Y.

Tao, X. T.

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett.33(16), 1872–1874 (2008).
[CrossRef] [PubMed]

Thomson, R. R.

Timoshechkin, M. I.

Toncelli, A.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Toncelli, M.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

Tsymbal, L. I.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Ushakov, S. N.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

van Dalfsen, K.

Vazquez de Aldana, J. R.

F. Chen and J. R. Vazquez de Aldana, “Optical Waveguides in Crystalline Dielectric Materials Produced by Femtosecond Laser Micromachining,” Laser Photonics Rev. DOI: .
[CrossRef]

Vázquez de Aldana, J. R.

Voronko, Yu. K.

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Wang, J.

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009).
[CrossRef] [PubMed]

Wang, J. Y.

Wang, K.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Wang, L.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Wang, L. L.

L. L. Wang and Y. G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci.256(8), 2616–2619 (2010).
[CrossRef]

Wang, X.

C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
[CrossRef]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

Wang, Z.

Wang, Z. P.

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Wei, Z. Y.

Withford, M. J.

Xie, G. Q.

Xu, J.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Yagi, H.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Yamanaka, M.

Yang, J.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Yokotani, A.

Yu, H.

Yu, H. H.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett.33(16), 1872–1874 (2008).
[CrossRef] [PubMed]

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Yu, Y.

Yu, Y. G.

L. L. Wang and Y. G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci.256(8), 2616–2619 (2010).
[CrossRef]

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Zhang, B.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

Zhang, D.

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

Zhang, D. X.

Zhang, H.

Y. Ren, J. R. Vázquez de Aldana, F. Chen, and H. Zhang, “Channel waveguide lasers in Nd:LGS crystals,” Opt. Express21(5), 6503–6508 (2013).
[CrossRef] [PubMed]

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009).
[CrossRef] [PubMed]

C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
[CrossRef]

Zhang, H. J.

Zhang, X.

Zhang, Z.

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

Zhang, Z. G.

Zhao, J.

C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B105(4), 807–811 (2011).
[CrossRef]

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011).
[CrossRef]

Appl. Surf. Sci. (1)

L. L. Wang and Y. G. Yu, “Characterization of laser waveguides in Nd:CNGG crystals formed by low fluence carbon ion implantation,” Appl. Surf. Sci.256(8), 2616–2619 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Toncelli, M. Toncelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric Solid-State Plannar Waveguide Laser: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007).
[CrossRef]

J. Appl. Phys. (1)

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd 3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys.101(5), 053112 (2007).
[CrossRef]

J. Korean Phys. Soc. (1)

C. Liu, J. Zhao, H. Zhang, and X. Wang, “Property Studies of Optical Waveguide Formed by keV He-Ion Implanted into a Nd:CNGG Crystal,” J. Korean Phys. Soc.55(61), 2638–2641 (2009).
[CrossRef]

J. Lightwave Technol. (2)

P. Szczepanski, A. Mossakowska, and D. Dejnarowicz, “Relaxation oscillations in waveguide distributed feedback lasers,” J. Lightwave Technol.10(2), 220–226 (1992).
[CrossRef]

M. Dinand and Ch. Schutte, “Theoretical Modeling of Relaxation Oscillation in Er-doped Waveguide lasers,” J. Lightwave Technol.13(1), 14–23 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

Z. B. Shi, X. Fang, H. J. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, “Continuous-wave laser operation at 1.33 mu m of Nd:CNGG and Nd: CLNGG crystals,” Laser Phys. Lett.5(3), 177–180 (2008).
[CrossRef]

Opt. Commun. (1)

Y. Shi, Q. Li, D. Zhang, B. Feng, Z. Zhang, H. Zhang, and J. Wang, “Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm,” Opt. Commun.283(14), 2888–2891 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31(18), 2690–2691 (2006).
[CrossRef] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett.38(14), 2588–2591 (2013).
[CrossRef] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett.37(5), 887–889 (2012).
[CrossRef] [PubMed]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett.34(2), 151–153 (2009).
[CrossRef] [PubMed]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett.33(16), 1872–1874 (2008).
[CrossRef] [PubMed]

Q. N. Li, B. H. Feng, Z. Y. Wei, D. X. Zhang, D. H. Li, Z. G. Zhang, H. J. Zhang, and J. Y. Wang, “Continuous wave 935 nm Nd:CNGG laser at watt-level power,” Opt. Lett.33(3), 261–263 (2008).
[CrossRef] [PubMed]

Optical Waveguides in Crystalline Dielectric Materials Produced by Femtosecond Laser Micromachining (1)

F. Chen and J. R. Vazquez de Aldana, “Optical Waveguides in Crystalline Dielectric Materials Produced by Femtosecond Laser Micromachining,” Laser Photonics Rev. DOI: .
[CrossRef]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Quantum Electron. (1)

Yu. K. Voronko, N. A. Es'kov, V. V. Osiko, A. A. Sobol', S. A. Sychev, S. N. Ushakov, and L. I. Tsymbal, “Lasing properties of neodymium-doped calcium-niobium-gallium and calcium-lithium-niobium-gallium garnets at wavelengths of 1.06 and 1.33 mum,” Quantum Electron.20, 574–576 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross section of the inscribed Type III waveguide in Nd:CNGG crystal; the measured modal profile (TM00) of the pumping laser at wavelength of 804 nm (b) and the output laser ~1060 nm (c).

Fig. 2
Fig. 2

The experiment setup for the continuous tri-wavelength waveguide laser generation.

Fig. 3
Fig. 3

Maximum power of the output laser as a function of the wavelength of the pumping laser (red dots); absorption spectrum of the Nd:CNGG crystal around 808 nm (green dashed line).

Fig. 4
Fig. 4

The laser emission spectra of Nd3+ ions at 4F3/24I11/2 transition obtained from the output laser (blue line).

Fig. 5
Fig. 5

Power of the total output waveguide laser (a) and partial powers for the different wavelengths (b) versus the launched pumping power.

Fig. 6
Fig. 6

The variation ratio of the total output laser power as a function of time, measured by a photodiode and an oscilloscope with resolution ~2 ns.

Metrics