Abstract

Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt.44(15), 2949–2956 (2005).
    [CrossRef] [PubMed]
  2. S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng.33(11), 3649–3655 (1994).
    [CrossRef]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt.40(11), 1806–1813 (2001).
    [CrossRef] [PubMed]
  4. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express17(18), 15747–15759 (2009).
    [CrossRef] [PubMed]
  5. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express13(3), 889–903 (2005).
    [CrossRef] [PubMed]
  6. K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev.3(4), 264–268 (1996).
    [CrossRef]
  7. K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst.9(1), 32–37 (2000).
    [CrossRef]
  8. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
    [CrossRef] [PubMed]
  9. R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. Thomas, “High precision target tracking with a compound-eye image sensor,” Canadian conference on electrical and computer engineering 2004, San Jose, California, USA (2004).
    [CrossRef]
  10. W. C. Sweatt and D. D. Gill, “Microoptical compound lens,” United States Patent, Patent No.: 7,286,295 B1 (2007).
  11. F. M. Reininger, “Fiber coupled artificial compound eye,” United States Patent, Patent No.: 7,376,314 B2 (2008).
  12. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express18(17), 18125–18137 (2010).
    [CrossRef] [PubMed]
  13. L. Li and A. Y. Yi, “Design and fabrication of a freeform prism array for 3D microscopy,” J. Opt. Soc. Am. A27(12), 2613–2620 (2010).
    [CrossRef] [PubMed]
  14. L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng.19(10), 105010 (2009).
    [CrossRef]
  15. H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys.179, 242–250 (2012).
    [CrossRef]
  16. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
    [CrossRef] [PubMed]
  17. J. R. Meyer, “Photoreceptors” (General Entomology). http://www.cals.ncsu.edu/course/ent425/tutorial/photo.html

2012

H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys.179, 242–250 (2012).
[CrossRef]

2011

2010

2009

2006

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

2005

2001

2000

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst.9(1), 32–37 (2000).
[CrossRef]

1996

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev.3(4), 264–268 (1996).
[CrossRef]

1994

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng.33(11), 3649–3655 (1994).
[CrossRef]

Bräuer, A.

Brückner, A.

Dannberg, P.

Duparré, J.

Eberhardt, R.

Eisner, M.

Gebhardt, A.

Hamanaka, K.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev.3(4), 264–268 (1996).
[CrossRef]

Hoshino, K.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst.9(1), 32–37 (2000).
[CrossRef]

Ichioka, Y.

Ishida, J.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng.33(11), 3649–3655 (1994).
[CrossRef]

Ishida, K.

Jeong, K.-H.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Kim, J.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Kondou, N.

Koshi, H.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev.3(4), 264–268 (1996).
[CrossRef]

Kumagai, T.

Lee, L. P.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Li, L.

Matthes, A.

McCray, D. L.

H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys.179, 242–250 (2012).
[CrossRef]

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Mura, F.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst.9(1), 32–37 (2000).
[CrossRef]

Ogata, S.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng.33(11), 3649–3655 (1994).
[CrossRef]

Pshenay-Severin, E.

Risse, S.

Sasano, T.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng.33(11), 3649–3655 (1994).
[CrossRef]

Scharf, T.

Scheiding, S.

Schreiber, P.

Shimoyama, I.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst.9(1), 32–37 (2000).
[CrossRef]

Stollberg, K.

Tanida, J.

Tünnermann, A.

Völkel, R.

Yamada, K.

Yao, D.

H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys.179, 242–250 (2012).
[CrossRef]

Yi, A. Y.

Zhang, H.

H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys.179, 242–250 (2012).
[CrossRef]

Appl. Opt.

J. Microelectromech. Syst.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst.9(1), 32–37 (2000).
[CrossRef]

J. Micromech. Microeng.

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng.19(10), 105010 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng.33(11), 3649–3655 (1994).
[CrossRef]

Opt. Express

Opt. Rev.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale-invariant processing,” Opt. Rev.3(4), 264–268 (1996).
[CrossRef]

Science

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sens. Actuators A Phys.179, 242–250 (2012).
[CrossRef]

Other

J. R. Meyer, “Photoreceptors” (General Entomology). http://www.cals.ncsu.edu/course/ent425/tutorial/photo.html

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. Thomas, “High precision target tracking with a compound-eye image sensor,” Canadian conference on electrical and computer engineering 2004, San Jose, California, USA (2004).
[CrossRef]

W. C. Sweatt and D. D. Gill, “Microoptical compound lens,” United States Patent, Patent No.: 7,286,295 B1 (2007).

F. M. Reininger, “Fiber coupled artificial compound eye,” United States Patent, Patent No.: 7,376,314 B2 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) 3D microlens array on a curved substrate. (b) Apposition compound eye, from [17].

Fig. 2
Fig. 2

(a) Strategy of beam steering design. (b) Beam steering by freeform lens. (c) Beam steering by field lens.

Fig. 3
Fig. 3

Structure of the three-layer 3D compound eye.

Fig. 4
Fig. 4

(a) Freeform surface array. (b) Field lens surface array. (c) Close-up view of freeform surface for channel 4. (d) Close up view of the field lens surface for channel 4.

Fig. 5
Fig. 5

Schematic of the beam steering at channel 4.

Fig. 6
Fig. 6

(a) Incident beam for different field angles for channel 4. (b) Spot diagram for channel 4.

Fig. 7
Fig. 7

(a) MTF of sagittal direction. (b) MTF of tangential direction.

Fig. 8
Fig. 8

(a) Mold insert of freeform lens array. (b) Mold insert of field lens array.

Fig. 9
Fig. 9

(a) Injection molded freeform lens array. (b) Injection molded field lens array.

Fig. 10
Fig. 10

Set up for optical performance test.

Fig. 11
Fig. 11

(a), (b), (c), (d), and (e) are captured images of USAF 1951 target for channels 1, 2, 3, 4, and 5, respectively.

Fig. 12
Fig. 12

(a) Measured saggital MTF curves. (b) Measured tangential MTF curves.

Fig. 13
Fig. 13

(a) Stereo targets arranged for performance evaluation. (b) The captured image using the 3D microlens array without the freeform and field lens arrays. (c) An image from the proposed artificial compound eye. (d) Close up view of (c).

Fig. 14
Fig. 14

Image mosaicing test: (a) grid figure as test target; (b) captured image using the 3D compound eye; (c) panorama after image mosaicking.

Tables (3)

Tables Icon

Table 1 Selection of 3D microlens

Tables Icon

Table 2 Beam steering evaluation for each channel

Tables Icon

Table 3 Spot aberrations and positions for five field angles for channel 4

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N 1 = ( S 1 x , S 1 y ,1 ) | ( x o 1 , y o 1 , z o 1 )
N 1 ( A O 1 × O 1 O 2 )=0
sin( θ 1 )=nsin( θ 1 )
cos( θ 1 )= A O 1 N 1 | A O 1 || N 1 |
N 2 = ( S 2 x , S 2 y ,1 ) | ( x o 2 , y o 2 , z o 2 )
N 2 ( O 1 O 2 × O 2 O 3 )=0
sin( θ 2 )=nsin( θ 2 )
cos( θ 2 )= O 1 O 2 N 2 | O 1 O 2 || N 2 |
Δ θ 1 =( θ 2 θ 2 )+( θ 1 θ 1 )
Δ θ 2 =( θ 4 θ 4 )+( θ 3 θ 3 )
Δθ=Δ θ 1 +Δ θ 2
z= c r 2 1+ 1(1+k) c 2 r 2
z= c r 2 1+ 1(1+k) c 2 r 2 + i=1 N A i E i (x,y)
z= c r 2 1+ 1(1+k) c 2 r 2 + A 2 y+ A 3 x 2 + A 5 y 2 + A 7 x 2 y+ A 9 y 3 + A 10 x 4
Contrast= I max I min I max + I min
ψ=arctan( 300 320 ) 180 π

Metrics