Abstract

The upconversion emission of rare earth ions can be modified in photonic crystals, however, the influence of upconversion emission modification of rare earths on near infrared emission has not been investigated yet in the photonic crystals. In the paper, CeO2: Er3+, Yb3+ inverse opals with the photonic band gaps at 545, 680 and 450 nm were prepared by polystyrene colloidal crystal templates. The upconversion and the near infrared emission properties of Er3+ ions were systematically investigated in the CeO2: Er3+, Yb3+ inverse opals. Comparing with the reference sample, significant suppression of both the green and red upconversion luminescence of Er3+ ions were observed in the inverse opals. It is interesting that the infrared emission located at 1560 nm was enhanced due to inhibition of upconversion emission in the inverse opals. Additionally, mechanism of upconversion emission of the inverse opal was discussed. The photon avalanche upconversion process is observed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett.74(13), 1800–1802 (1999).
    [CrossRef]
  4. W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater.14(4), 271–274 (2002).
    [CrossRef]
  5. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab,” Opt. Express14(3), 1230–1235 (2006).
    [CrossRef] [PubMed]
  6. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
    [CrossRef]
  7. Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
    [CrossRef]
  8. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
    [CrossRef]
  9. S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, D. A. Yarotsky, I. I. Kalosha, A. A. Eychmueller, A. L. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Technol.17(11), 2128–2137 (1999).
    [CrossRef]
  10. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  11. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  12. F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
    [CrossRef]
  13. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett.36(20), 3990–3992 (2011).
    [CrossRef] [PubMed]
  14. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
    [CrossRef] [PubMed]
  15. P. Markowicz, C. Friend, Y. Z. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals,” Opt. Lett.27(5), 351–353 (2002).
    [CrossRef] [PubMed]
  16. L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
    [CrossRef]
  17. Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
    [CrossRef]
  18. Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
    [CrossRef]

2012

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

2011

2010

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

2009

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

2006

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab,” Opt. Express14(3), 1230–1235 (2006).
[CrossRef] [PubMed]

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

2005

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

2004

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

2002

P. Markowicz, C. Friend, Y. Z. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals,” Opt. Lett.27(5), 351–353 (2002).
[CrossRef] [PubMed]

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater.14(4), 271–274 (2002).
[CrossRef]

2001

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

1999

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Abbotto, A.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Alkeskjold, T. T.

Anawati, A.

Andersen, P. A.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

Berti, L.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Bjarklev, A.

Bogomolov, V. N.

Boyd, R. W.

Braun, P. V.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater.14(4), 271–274 (2002).
[CrossRef]

Broeng, J.

Chen, C.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Comoretto, D.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Conibeer, G. J.

Cucini, M.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Deng, Y. G.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Di Stasio, F.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Erchak, A. A.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Eychmueller, A. A.

Fan, S.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Friend, C.

Galli, M.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Gaponenko, S. V.

Geng, Y.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Gindele, F.

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hermann, D. S.

Hu, W. P.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Huang, X. G.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Ippen, E. P.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Jeppesen, P.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

Ji, Z. Y.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Jiang, L.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Joannopoulos, J. D.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

John, S.

Johnson, C. M.

Kalosha, I. I.

Kapitonov, A. M.

Kawanishi, S.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kolodziejski, L. A.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Lægsgaard, J.

Lee, W. M.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater.14(4), 271–274 (2002).
[CrossRef]

Li, B.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Li, J.

Li, L. L.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Li, Z. X.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Manfredi, N.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Marabelli, F.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Marinzi, C.

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Markowicz, P.

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett.74(13), 1800–1802 (1999).
[CrossRef]

McGilp, J.

Mitsugi, S.

Notomi, M.

Petrich, G. S.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Petrov, E. P.

Peucheret, C.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

Prasad, P. N.

Pruzinsky, S. A.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater.14(4), 271–274 (2002).
[CrossRef]

Qiu, J. B.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Rakich, P.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Reece, P. J.

Ripin, D. J.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

Robertson, W. M.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett.74(13), 1800–1802 (1999).
[CrossRef]

Rogach, A. L.

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shen, Y. Z.

Shi, Y. F.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Shinya, A.

Song, Y. L.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Song, Z. G.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Sun, L.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Sun, L. D.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Swiatkiewicz, J.

Takara, H.

Tanabe, T.

Toader, O.

Tokle, T.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

Wang, J. X.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Woggon, U.

Wu, S. T.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yan, C. H.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Yan, D.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Yang, G.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Yang, Z. W.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Yarotsky, D. A.

Yin, Z. Y.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Yokohama, I.

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Yu, C. L.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Yu, X.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Yuan, Q.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Zhang, R. Y.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Zhang, Y. Q.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Zhao, D. Y.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

Zhou, D. C.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Zhou, H. P.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

Zhou, J.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

Zhu, D. B.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

Zhu, K.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Adv. Mater.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater.14(4), 271–274 (2002).
[CrossRef]

Appl. Phys. Lett.

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett.78(5), 563–565 (2001).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett.74(13), 1800–1802 (1999).
[CrossRef]

Chem. Commun. (Camb.)

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.)43(43), 6616–6618 (2009).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(9), 1908–1910 (2005).
[CrossRef]

J. Appl. Phys.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, G. Yang, B. Li, and C. L. Yu, “Energy transfer enhancement in Eu3+ doped TbPO4 inverse opal photonic crystals,” J. Appl. Phys.105(8), 083523 (2009).
[CrossRef]

J. Lightwave Technol.

J. Mater. Chem.

Y. Q. Zhang, J. X. Wang, Z. Y. Ji, W. P. Hu, L. Jiang, Y. L. Song, and D. B. Zhu, “Solid-state fluorescence enhancement of organic dyes by photonic crystals,” J. Mater. Chem.17(1), 90–94 (2006).
[CrossRef]

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem.20(19), 3895–3900 (2010).
[CrossRef]

J. Phys. Chem. C

L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, “Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye,” J. Phys. Chem. C114(6), 2403–2413 (2010).
[CrossRef]

Mater. Chem. Phys.

Z. W. Yang, D. Yan, K. Zhu, Z. G. Song, X. Yu, D. C. Zhou, Z. Y. Yin, and J. B. Qiu, “Modification of the upconversion spontaneous emission in photonic crystals,” Mater. Chem. Phys.133(2-3), 584–587 (2012).
[CrossRef]

Nature

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The SEM image of the opals template constructed with PS microspheres with diameter of 400 nm (a), 460 nm (b), 350 nm (c), the disordered template made of mixing PS microspheres with the diameter of 220 nm and 400 nm (d), the IPC-1 sample (e), the IPC-2 sample (f), IPC-3 sample (g), and the RS sample (h).

Fig. 2
Fig. 2

The XRD patterns of the IPC sample (a) and the corresponding standard cards No. 01-0800 (b).

Fig. 3
Fig. 3

The transmittance spectra of the IPC-1, IPC-2, IPC-3 and RS sample.

Fig. 4
Fig. 4

The upconversion emission spectra of the IPC-1 and RS sample (a), the IPC-2 and RS sample (b) and the IPC-3 and RS sample (c).

Fig. 5
Fig. 5

Dependence of the green and red UC emission intensity on the pump power for the IPC-2 sample.

Fig. 6
Fig. 6

Energy level diagrams of Yb3+ and Er3+ ions and the UC emission mechanism.

Fig. 7
Fig. 7

The infrared emission spectra of the IPC-1, IPC-2, IPC-3 and RS sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=1.633D ( n 2 eff - sin 2 θ) 1/2
n 2 eff = n 2 CeO 2 f CeO 2 +n 2 air (1- f CeO 2 )

Metrics