Abstract

The present work describes a theoretical investigation of the near-field thermal radiation between doped Si plates coated with a mono-layer of graphene. It is found that the radiative heat flux between doped Si plates can be either enhanced or suppressed by introducing graphene layer, depending on the Si doping concentration and chemical potential of graphene. Graphene can enhance the heat flux if it matches resonance frequencies of surface plasmon at vacuum-source and vacuum-receiver interfaces. In particular, significant enhancement is achieved when graphene is coated on both surfaces that originally does not support the surface plasmon resonance. The results obtained in this study provide an important guideline into enhancing the near-field thermal radiation between doped Si plates by introducing graphene.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971).
    [CrossRef]
  2. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
    [CrossRef]
  3. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  4. P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
    [CrossRef]
  5. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
    [CrossRef]
  6. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009).
    [CrossRef] [PubMed]
  7. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
    [CrossRef]
  8. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
    [CrossRef] [PubMed]
  9. T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
    [CrossRef]
  10. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
    [CrossRef]
  11. C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer49, 1703–1718 (2006).
    [CrossRef]
  12. S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010).
    [CrossRef]
  13. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010).
    [CrossRef]
  14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007).
    [CrossRef] [PubMed]
  15. P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett.10, 4285–4294 (2010).
    [CrossRef]
  16. F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol.6, 611–612 (2011).
    [CrossRef] [PubMed]
  17. B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys. Condens. Matter22, 462201 (2010).
    [CrossRef]
  18. A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011).
    [CrossRef]
  19. V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012).
    [CrossRef]
  20. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
    [CrossRef]
  21. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
    [CrossRef] [PubMed]
  22. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports3, 1383 (2013).
    [CrossRef] [PubMed]
  23. B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12, 238–250 (2008).
    [CrossRef]
  24. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987).
    [CrossRef]
  25. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010).
    [CrossRef]
  26. S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B58, 423–431 (2007).
    [CrossRef]
  27. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008).
    [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008).
    [CrossRef]
  30. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
    [CrossRef]
  31. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009).
    [CrossRef]
  32. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012).
    [CrossRef] [PubMed]
  33. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
    [CrossRef]
  34. K. Park, B. J Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B22(5), 1016–1023 (2005).
    [CrossRef]
  35. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

2013

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports3, 1383 (2013).
[CrossRef] [PubMed]

2012

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
[CrossRef] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express20, 28017–28024 (2012).
[CrossRef] [PubMed]

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012).
[CrossRef]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

2011

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011).
[CrossRef]

F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol.6, 611–612 (2011).
[CrossRef] [PubMed]

2010

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys. Condens. Matter22, 462201 (2010).
[CrossRef]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010).
[CrossRef]

P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett.10, 4285–4294 (2010).
[CrossRef]

2009

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009).
[CrossRef] [PubMed]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

2008

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12, 238–250 (2008).
[CrossRef]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008).
[CrossRef]

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008).
[CrossRef]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
[CrossRef]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
[CrossRef]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

2007

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007).
[CrossRef] [PubMed]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B58, 423–431 (2007).
[CrossRef]

2006

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer49, 1703–1718 (2006).
[CrossRef]

2005

2004

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

2002

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
[CrossRef]

1987

1971

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971).
[CrossRef]

Alaee, R.

Alemi, A. A.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Avouris, P.

P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett.10, 4285–4294 (2010).
[CrossRef]

Basu, S.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010).
[CrossRef]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
[CrossRef]

Ben-Abdallah, P.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports3, 1383 (2013).
[CrossRef] [PubMed]

Biehs, S.-A.

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B58, 423–431 (2007).
[CrossRef]

Buljan, H.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Carminati, R.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
[CrossRef]

Celanovic, I.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
[CrossRef] [PubMed]

Chapuis, P.-O.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009).
[CrossRef] [PubMed]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
[CrossRef]

Chen, X.

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
[CrossRef]

Chevrier, J.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012).
[CrossRef]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008).
[CrossRef]

Farhat, M.

Fort, T.

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Francoeur, M.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010).
[CrossRef]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009).
[CrossRef]

Fu, C.

Fu, C. J.

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer49, 1703–1718 (2006).
[CrossRef]

Geim, A. K.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007).
[CrossRef] [PubMed]

Greffet, J.-J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
[CrossRef]

Hanzelka, P.

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Henkel, C.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

Horak, M.

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Hu, L.

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
[CrossRef]

Ilic, O.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
[CrossRef] [PubMed]

Jablan, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
[CrossRef] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Joannopoulos, J. D.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
[CrossRef] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

Joulain, K.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
[CrossRef]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
[CrossRef]

Kralik, T.

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Lederer, F.

Lee, B. J

Lee, B. J.

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010).
[CrossRef]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12, 238–250 (2008).
[CrossRef]

Lundock, R.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Marquier, F.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

Mengüç, M. P.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010).
[CrossRef]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009).
[CrossRef]

Messina, R.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports3, 1383 (2013).
[CrossRef] [PubMed]

Mueller, G.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Mulet, J.-P.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
[CrossRef]

Musilova, V.

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009).
[CrossRef] [PubMed]

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
[CrossRef]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007).
[CrossRef] [PubMed]

Ottens, R. S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Park, K.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
[CrossRef]

K. Park, B. J Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B22(5), 1016–1023 (2005).
[CrossRef]

Peres, N. M. R.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008).
[CrossRef]

Persson, B. N. J.

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011).
[CrossRef]

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys. Condens. Matter22, 462201 (2010).
[CrossRef]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971).
[CrossRef]

Quetschke, V.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rana, F.

F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol.6, 611–612 (2011).
[CrossRef] [PubMed]

Reitze, D. H.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Rockstuhl, C.

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

Shen, S.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009).
[CrossRef] [PubMed]

Sipe, J. E.

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

Soljacic, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express20, A366–A384 (2012).
[CrossRef] [PubMed]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Stauber, T.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008).
[CrossRef]

Svetovoy, V. B.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012).
[CrossRef]

Tanner, D. B.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Ueba, H.

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys. Condens. Matter22, 462201 (2010).
[CrossRef]

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010).
[CrossRef]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009).
[CrossRef]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971).
[CrossRef]

van Zwol, P. J.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012).
[CrossRef]

Volokitin, A. I.

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011).
[CrossRef]

Volz, S.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

Whiting, B. F.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Wise, S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

Zhang, Z. M.

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010).
[CrossRef]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12, 238–250 (2008).
[CrossRef]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
[CrossRef]

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer49, 1703–1718 (2006).
[CrossRef]

K. Park, B. J Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B22(5), 1016–1023 (2005).
[CrossRef]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zobac, M.

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Appl. Phys. Lett.

L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-field thermal radiation between two closely spaced glass plates exceeding Plancks blackbody radiation law,” Appl. Phys. Lett.92, 133106 (2008).
[CrossRef]

Eur. Phys. J. B

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B58, 423–431 (2007).
[CrossRef]

Int. J. Heat Mass Transfer

C. J. Fu and Z. M. Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer49, 1703–1718 (2006).
[CrossRef]

J. Heat Transfer

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer132, 023302 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132, 023301 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys. Condens. Matter22, 462201 (2010).
[CrossRef]

J. Phys. Conf. Ser.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser.129, 012004 (2008).
[CrossRef]

J. Phys. D: Appl. Phys.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D: Appl. Phys.43, 075501 (2010).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer109, 305–316 (2008).
[CrossRef]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer110, 2002–2018 (2009).
[CrossRef]

Microscale Thermophys. Eng.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng.6, 209–222 (2002).
[CrossRef]

Nano Lett.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett.9, 2909–2913 (2009).
[CrossRef] [PubMed]

P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett.10, 4285–4294 (2010).
[CrossRef]

Nanoscale Microscale Thermophys. Eng.

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12, 238–250 (2008).
[CrossRef]

Nat. Mater.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6, 183–191 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol.

F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol.6, 611–612 (2011).
[CrossRef] [PubMed]

Nat. Photonics

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics3, 514–517 (2009).
[CrossRef]

Opt. Commun.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun.237, 379–388 (2004).
[CrossRef]

Opt. Express

Phys. Rev. B

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78, 085432 (2008).
[CrossRef]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B4, 3303–3314 (1971).
[CrossRef]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B77, 035431 (2008).
[CrossRef]

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B83, 241407 (2011).
[CrossRef]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B85, 155418 (2012).
[CrossRef]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B85, 155422 (2012).
[CrossRef]

Phys. Rev. Lett.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett.107, 014301 (2011).
[CrossRef] [PubMed]

T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, “Strong Near-Field Enhancement of Radiative Heat Transfer between Metallic Surfaces,” Phys. Rev. Lett.109, 224302 (2012).
[CrossRef]

Scientific Reports

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports3, 1383 (2013).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the near-field thermal radiation between two doped Si plates with graphene separated by vacuum gap d (a) in three-dimensional view and (b) in cylindrical coordinate. A monolayer of graphene is modelled as surface conductivity σ.

Fig. 2
Fig. 2

Comparison of the spectral heat flux between the source (graphene-coated Si at 400 K) and the receiver (graphene-coated Si at 300 K) calculated by taking the configuration as multilayer system (symbols) and as two-body system with modified Fresnel reflection coefficients (lines).

Fig. 3
Fig. 3

Contour plot of the calculated radiative heat flux normalized by that between bare doped Si surfaces. In each panel of the figure, x-axis indicates the doping concentration of the source (1017 ∼ 1021 cm−3) and y-axis represents the doping concentration of the receiver (1017 ∼ 1021 cm−3). The left column corresponds to the case of d = 10 nm, and the right column is for d = 50 nm.

Fig. 4
Fig. 4

Spectral energy flux between two doped Si plates: (a) d = 10 nm, Source (1019 cm−3), Receiver (1020 cm−3); (b) d = 10 nm, Source (1019 cm−3), Receiver (1019 cm−3); and (c) d = 50 nm, Source (1019 cm−3), Receiver (1019 cm−3).

Fig. 5
Fig. 5

Contour plot of S(β, ω) with respect to the parallel wavevector component β normalized by plasma frequency (ωp = 2.90 × 1014 rad/s) of doped Si at 1019 cm−3 and 400 K. SPP dispersion curves are also overlaid. Source and receiver configurations for each case are listed in Table 1.

Fig. 6
Fig. 6

Contribution of graphene to the net heat transfer.

Fig. 7
Fig. 7

Net heat transfer between graphene-coated Si plates at 1017 cm−3 with respect to the vacuum gap width.

Tables (1)

Tables Icon

Table 1 Source and receiver configurations (N: no graphene; B: graphene on both sides; S: graphene on source only; R: graphene on receiver only).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( x , ω ) = i ω μ 0 V s d 3 x G ¯ ¯ ( x , x , ω ) j ( x , ω )
G ¯ ¯ ( x , x , ω ) = i 4 π 0 β d β 1 k 1 z ( s ^ t 12 s s ^ + p ^ 2 t 12 p p ^ 1 ) e i β r ^ ( r r ) e i { k 2 z ( z d ) k 1 z z }
q ω , 1 2 = S z = 0 S ( β , ω ) d β = γ = p , s 0 S γ ( β , ω ) d β
S prop γ ( β , ω ) = Θ ( ω , T 1 ) π 2 × β ( 1 | r 01 γ | 2 ) ( 1 | r 02 γ | 2 ) 4 | 1 r 01 γ r 02 γ e i 2 k 0 z d | 2 S evan γ ( β , ω ) = Θ ( ω , T 1 ) π 2 × β Im ( r 01 γ ) Im ( r 02 γ ) e 2 Im ( k 0 z ) d | 1 r 01 γ r 02 γ e i 2 k 0 z d | 2
σ I = e 2 4 h ¯ [ G ( h ¯ ω 2 ) + i 4 h ¯ ω π 0 G ( ξ ) G ( h ¯ ω / 2 ) ( h ¯ ω ) 2 4 ξ 2 d ξ ] σ D = i ω + i τ 2 e 2 k B T π h ¯ 2 ln [ 2 cosh ( μ 2 k B T ) ]
z ^ × ( E 1 E 0 ) = 0 z ^ × ( H 1 H 0 ) = K
r 0 G 1 s = k 0 z k 1 z σ μ 0 ω k 0 z + k 1 z + σ μ 0 ω r 0 G 1 p = ε 1 k 0 z k 1 z + ( σ k 0 z k 1 z ω ε 0 ) ε 1 k 0 z + k 1 z + ( σ k 0 z k 1 z ω ε 0 )

Metrics