Abstract

A pilot-symbols-aided phase unwrapping (PAPU), which utilizes the time-division multiplexed pilot symbols that are transmitted with data, is proposed to do cycle slip detection and correction with the carrier phase estimation (CPE). Numerical simulations for 10 Gbaud dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM) systems show that the block averaging quadrature phase-shift keying (QPSK) partitioning with PAPU greatly eliminates the performance degradation caused by cycle slips, maintains a low CS probability with less influence of filter length, and achieves a bit-error-rate (BER) performance below soft-decision forward error correction (FEC) limit 2 × 10−2 at 15 dB optical signal-to-noise ratio with only 1.56% overhead and 6 MHz combined laser linewidth.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
    [CrossRef]
  2. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-effcient coherent digital receiver concept with feed forward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
    [CrossRef]
  3. Y. Gao, A. P. T. Lau, S. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express19(22), 21717–21729 (2011).
    [CrossRef] [PubMed]
  4. E. Ip and J. M. Kahn, “Addendum to ‘Feedforward Carrier Recovery for Coherent Optical Communications’,” J. Lightwave Technol.27(13), 2552–2553 (2009).
    [CrossRef]
  5. H. Zhang, Y. Cai, D. G. Foursa, and A. N. Pilipetskii, “Cycle Slip Mitigation in POLMUX-QPSK Modulation,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, CA, 2011, OMJ7.
  6. C. R. S. Fludger, D. Nuss, and T. Kupfer, “Cycle-slips in 100G DP-QPSK transmission systems,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, CA, 2012, OTu2G.1.
  7. M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
    [CrossRef]
  8. Y. Gao, A. P. T. Lau, and C. Lu, “Cycle-slip resilient carrier phase estimation for polarization multiplexed 16-QAM systems,” in Opto-Electronics and Communications Conference (OECC), Busan, 2012, 4B2–4
    [CrossRef]
  9. A. Bisplinghoff, C. Vogel, T. Kupfer, S. Langenbach, and B. Schmauss, “Slip-reduced carrier phase estimation for coherent transmission in the presence of non-linear phase noise,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) Anaheim, CA 2013, OTu3I.1.
    [CrossRef]
  10. Fangrong Peng, “Phase Noise Estimation for Coherent Fiber-Optic Communication,” Master’s thesis, Chalmers Univ. of Technology, Gothenburg, Sweden, (2010).
  11. X. Zhou, X. Chen, and K. P. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
    [CrossRef]
  12. M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
    [CrossRef] [PubMed]

2012

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

X. Zhou, X. Chen, and K. P. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

2011

2010

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

2009

Barletta, L.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

Bertolini, M.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
[CrossRef] [PubMed]

Chen, X.

X. Zhou, X. Chen, and K. P. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Gao, Y.

Gavioli, G.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
[CrossRef] [PubMed]

Hoffmann, S.

Hoshida, T.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Ip, E.

Kahn, J. M.

Lau, A. P. T.

Li, L.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Liu, L.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Long, K. P.

X. Zhou, X. Chen, and K. P. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Lu, C.

Magarini, M.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
[CrossRef] [PubMed]

Nakashima, H.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Noé, R.

Oda, S.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Pepe, M.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
[CrossRef] [PubMed]

Pfau, T.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-effcient coherent digital receiver concept with feed forward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
[CrossRef]

Rasmussen, J. C.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Spalvieri, A.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
[CrossRef] [PubMed]

Tanimura, T.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Tao, Z.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Vacondio, F.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express19(23), 22455–22461 (2011).
[CrossRef] [PubMed]

Yan, S.

Yan, W.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

Zhou, X.

X. Zhou, X. Chen, and K. P. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1201–1209 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Technol. Lett.24(9), 739–741 (2012).
[CrossRef]

X. Zhou, X. Chen, and K. P. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

Y. Gao, A. P. T. Lau, and C. Lu, “Cycle-slip resilient carrier phase estimation for polarization multiplexed 16-QAM systems,” in Opto-Electronics and Communications Conference (OECC), Busan, 2012, 4B2–4
[CrossRef]

A. Bisplinghoff, C. Vogel, T. Kupfer, S. Langenbach, and B. Schmauss, “Slip-reduced carrier phase estimation for coherent transmission in the presence of non-linear phase noise,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) Anaheim, CA 2013, OTu3I.1.
[CrossRef]

Fangrong Peng, “Phase Noise Estimation for Coherent Fiber-Optic Communication,” Master’s thesis, Chalmers Univ. of Technology, Gothenburg, Sweden, (2010).

H. Zhang, Y. Cai, D. G. Foursa, and A. N. Pilipetskii, “Cycle Slip Mitigation in POLMUX-QPSK Modulation,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, CA, 2011, OMJ7.

C. R. S. Fludger, D. Nuss, and T. Kupfer, “Cycle-slips in 100G DP-QPSK transmission systems,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, CA, 2012, OTu2G.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The QPSK partitioning based blind CPE with (a) usual phase unwrap, (b) pilot-symbols-aided CS mitigation scheme, and (c) the pilot-symbols-aided phase unwrapping (PAPU).

Fig. 2
Fig. 2

Unwrapped and estimated phase by PAPU and FWBW

Fig. 3
Fig. 3

Mean CS probability versus averaging filter length with various pilot-rate and pilot arrangement,17.5 dB OSNR and 2.4 MHz combined laser linewidth by 30 independent simulations. (a-b) Mean CS probability versus averaging filter length with the same pilot-rate but different pilot arrangement for PAPUand FWBW; (c-d) Mean CS probability versus averaging filter length with different pilot-rate for PAPUand FWBW.The four subgraphs share the same coordinate and scale on the horizontal and vertical axis.

Fig. 4
Fig. 4

Mean CS probability versus averaging filter length with the usual phase wrap with CS, the CS mitigation by FWBW and PAPU. 30 independent simulations is performed with 16 dB, 16.5 dB and 17.5 dB OSNR and 2.4 MHz combined laser linewidth.

Fig. 5
Fig. 5

BER versus different OSNR for single/joint polarization and differential coding CPE with FWBW/PAPU CS mitigation, the simulated OSNR is from 14.5 dB to 19 dB with 0.5 dB spacing, and the combined laser linewidth is 3.2MHz.

Fig. 6
Fig. 6

Required OSNR versus different combined laser linewidth for single/joint polarization and differential coding CPE with FWBW/PAPU CS mitigation, The combined linewidth of the transmitter laser and local oscillator are 0 MHz, 0.6 MHz, 1.4 MHz, 2.4 MHz, 3.2 MHz, 4 MHz, 5 MHz, and 6 MHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s x(y) (k)= c x(y) (k)exp(j θ x(y) (k))+ n x(y) (k)
ϕ ^ x(y) (m)=arg( i=0 P1 d * (mi) s x(y) (mi) )
φ ^ k,x(y) u = φ ^ k,x(y) r +rngf( φ ^ k,x(y) r φ ^ k1,x(y) u )
f(z)={ +1 0 1 (z< rng 2 ) (|z|< rng 2 ) (z> rng 2 )
θ ^ k,x(y) u = θ ^ k,x(y) u0 π 2 round( 3 π [ θ ^ k,x(y) u0 ϕ ^ ' x(y) (k)])

Metrics