Abstract

Clocking of lens elements is frequently used as an effective method of compensating for two-dimensional tolerances such as material inhomogeneity and surface figure errors. Typically, the lens designer has to determine the optimum angles of rotation by manually modeling lens element clocking in the commercial optical design software because the nature of errors resolved by lens clocking does not lead to good convergences for clocking optimization. In this paper, a method of automatic clocking optimization is developed. The method is implemented using a combination of particle swarm optimization algorithm and commercial optical design software. The optimum angles of rotation and predicted imaging performance are automatically calculated using this method. Methods of implementation and optimization examples are also given.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront aberration compensation of projection lens using clocking lens elements

ChunLai Liu, Wei Huang, Zhenguang Shi, and Weicai Xu
Appl. Opt. 52(22) 5398-5401 (2013)

Automatic image performance balancing in lens optimization

Dewen Cheng, Yongtian Wang, and Hong Hua
Opt. Express 18(11) 11574-11588 (2010)

Augmented design and analysis of computer experiments: a novel tolerance embedded global optimization approach applied to SWIR hyperspectral illumination design

Janos C. Keresztes, R. John Koshel, Karlien D’huys, Bart De Ketelaere, Jan Audenaert, Peter Goos, and Wouter Saeys
Opt. Express 24(26) 29380-29405 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).
  2. A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
    [Crossref]
  3. J. R. Rogers, “Homogeneity tolerances for Optical Elements,” (CODE V User Group Meeting, 2011). http://www.opticalres.com/
  4. T. I. Harris, “Overview of CODE V Development,” Proc. SPIE 1354, 104 (1990).
  5. D. M. Williamson, “Compensator selection in the tolerancing of a microlithographic lens,” Proc. SPIE 1049, 178–186 (1989).
    [Crossref]
  6. T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
    [Crossref]
  7. T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
    [Crossref]
  8. J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks (Perth, Australia, 1995), pp. 1942–1948.
    [Crossref]
  9. Y. Omura, European Patent 1139138, embodiment 5.
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge Univ. Press, 2007), Chap. 10.5 and Chap. 10.12.

2003 (1)

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

2001 (1)

A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
[Crossref]

2000 (1)

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

1999 (1)

K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).

1990 (1)

T. I. Harris, “Overview of CODE V Development,” Proc. SPIE 1354, 104 (1990).

1989 (1)

D. M. Williamson, “Compensator selection in the tolerancing of a microlithographic lens,” Proc. SPIE 1049, 178–186 (1989).
[Crossref]

Becker, K.

K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).

Dörband, B.

K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks (Perth, Australia, 1995), pp. 1942–1948.
[Crossref]

Engel, A.

A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
[Crossref]

Harris, T. I.

T. I. Harris, “Overview of CODE V Development,” Proc. SPIE 1354, 104 (1990).

Jordanov, A.

A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
[Crossref]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks (Perth, Australia, 1995), pp. 1942–1948.
[Crossref]

Knapp, K.

A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
[Crossref]

Koizumi, R.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

Koyama, T.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

Lörcher, R.

K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).

Matsuyama, T.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

Mörsen, E.

A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
[Crossref]

Nomura, K.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

Ozawa, T.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

Schmidt, M.

K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).

Suda, S.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

Suzuki, A.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

Takahashi, K.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

Tanaka, I.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

Williamson, D. M.

D. M. Williamson, “Compensator selection in the tolerancing of a microlithographic lens,” Proc. SPIE 1049, 178–186 (1989).
[Crossref]

Yoshihara, T.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

Proc. SPIE (6)

T. I. Harris, “Overview of CODE V Development,” Proc. SPIE 1354, 104 (1990).

D. M. Williamson, “Compensator selection in the tolerancing of a microlithographic lens,” Proc. SPIE 1049, 178–186 (1989).
[Crossref]

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[Crossref]

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very-small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[Crossref]

K. Becker, B. Dörband, R. Lörcher, and M. Schmidt, “Aspheric Optics at Different Quality Levels and Functional Need,” Proc. SPIE 3739, ••• (1999).

A. Engel, E. Mörsen, A. Jordanov, and K. Knapp, “Present and future industrial metrology needs for Qualification of High Quality Optical Micro Lithography Materials,” Proc. SPIE 4449, 1–6 (2001).
[Crossref]

Other (4)

J. R. Rogers, “Homogeneity tolerances for Optical Elements,” (CODE V User Group Meeting, 2011). http://www.opticalres.com/

J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks (Perth, Australia, 1995), pp. 1942–1948.
[Crossref]

Y. Omura, European Patent 1139138, embodiment 5.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge Univ. Press, 2007), Chap. 10.5 and Chap. 10.12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Flow chart of manual clocking optimization.

Fig. 2
Fig. 2

Flow chart of automatic clocking optimization.

Fig. 3
Fig. 3

Layout of lithographic lens with interferometric material inhomogeneity errors.

Fig. 4
Fig. 4

MCO vs. ACO convergence for lithographic lens with NA = 0.75.

Tables (3)

Tables Icon

Table 1 Specifications of the Lithographic Lens

Tables Icon

Table 2 Index Inhomogeneity and Dimension Sizes for Each Lens Element

Tables Icon

Table 3 Comparison between the optimum results of the two clocking optimization methods

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M=f[ s 1 ( θ 1 ), s 2 ( θ 2 ),.. s N ( θ N )].
M= a· W 2 +b· D 2 .

Metrics