Abstract

We propose the use of the subwavelength localization via adiabatic passage technique for fluorescence microscopy with nanoscale resolution in the far field. This technique uses a Λ-type medium coherently coupled to two laser pulses: the pump, with a node in its spatial profile, and the Stokes. The population of the Λ system is adiabatically transferred from one ground state to the other except at the node position, yielding a narrow population peak. This coherent localization allows fluorescence imaging with nanometer lateral resolution. We derive an analytical expression to asses the resolution and perform a comparison with the coherent population trapping and the stimulated-emission-depletion techniques.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9, 413 (1873).
    [CrossRef]
  2. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21, 1347 (2003).
    [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780 (1994).
    [CrossRef] [PubMed]
  4. S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60, 495 (1995).
    [CrossRef]
  5. G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys.39, 3437 (2006).
    [CrossRef]
  6. A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
    [CrossRef] [PubMed]
  7. D. D. Yavuz and N. A. Proite, “Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency,” Phys. Rev. A76, 041802(R) (2007).
    [CrossRef]
  8. K. T. Kapale and S. Agarwal, “Subnanoscale resolution for microscopy via coherent population trapping,” Op. Lett.35, 2792 (2010).
    [CrossRef]
  9. H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
    [CrossRef]
  10. J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009).
    [CrossRef]
  11. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998).
    [CrossRef]
  12. D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
    [CrossRef]
  13. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, New Series, 271, 933–937 (1996).
  14. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
    [CrossRef] [PubMed]
  15. U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
    [CrossRef]
  16. J. Fabian and U. Hohenester, “Entanglement distillation by adiabatic passage in coupled quantum dots,” Phys. Rev. B72, 201304(R) (2005).
    [CrossRef]
  17. P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
    [CrossRef]
  18. S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
    [CrossRef]

2012 (1)

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

2010 (1)

K. T. Kapale and S. Agarwal, “Subnanoscale resolution for microscopy via coherent population trapping,” Op. Lett.35, 2792 (2010).
[CrossRef]

2009 (1)

J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009).
[CrossRef]

2008 (3)

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

2007 (1)

D. D. Yavuz and N. A. Proite, “Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency,” Phys. Rev. A76, 041802(R) (2007).
[CrossRef]

2006 (1)

G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys.39, 3437 (2006).
[CrossRef]

2005 (2)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

J. Fabian and U. Hohenester, “Entanglement distillation by adiabatic passage in coupled quantum dots,” Phys. Rev. B72, 201304(R) (2005).
[CrossRef]

2003 (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21, 1347 (2003).
[CrossRef] [PubMed]

2000 (2)

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998).
[CrossRef]

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, New Series, 271, 933–937 (1996).

1995 (1)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60, 495 (1995).
[CrossRef]

1994 (1)

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9, 413 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9, 413 (1873).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys.39, 3437 (2006).
[CrossRef]

Agarwal, S.

K. T. Kapale and S. Agarwal, “Subnanoscale resolution for microscopy via coherent population trapping,” Op. Lett.35, 2792 (2010).
[CrossRef]

Ahufinger, V.

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009).
[CrossRef]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, New Series, 271, 933–937 (1996).

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998).
[CrossRef]

Birkl, G.

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009).
[CrossRef]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Eliseev, P. G.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Engelhardt, J.

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

Fabian, J.

J. Fabian and U. Hohenester, “Entanglement distillation by adiabatic passage in coupled quantum dots,” Phys. Rev. B72, 201304(R) (2005).
[CrossRef]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Gorshkov, A. V.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

Greiner, M.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

Hell, S. W.

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21, 1347 (2003).
[CrossRef] [PubMed]

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60, 495 (1995).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19, 780 (1994).
[CrossRef] [PubMed]

Hohenester, U.

J. Fabian and U. Hohenester, “Entanglement distillation by adiabatic passage in coupled quantum dots,” Phys. Rev. B72, 201304(R) (2005).
[CrossRef]

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

Irvine, S. E.

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

Jiang, L.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

Kapale, K. T.

K. T. Kapale and S. Agarwal, “Subnanoscale resolution for microscopy via coherent population trapping,” Op. Lett.35, 2792 (2010).
[CrossRef]

G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys.39, 3437 (2006).
[CrossRef]

Kash, M. M.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Kroug, M.

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60, 495 (1995).
[CrossRef]

Lester, L. F.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Li, H.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Liu, G. T.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Lukin, M. D.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

Macchiavello, C.

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

Malloy, K. J.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Molinari, E.

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

Mompart, J.

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009).
[CrossRef]

Newell, T. C.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Panzarini, G.

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Proite, N. A.

D. D. Yavuz and N. A. Proite, “Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency,” Phys. Rev. A76, 041802(R) (2007).
[CrossRef]

Rittweger, E.

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

Rostovtsev, Y. V.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Rubio, J. L.

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

Sautenkov, V. A.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Scully, M. O.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998).
[CrossRef]

Sokolov, A. V.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Staudt, T.

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

Stintz, A.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998).
[CrossRef]

Troiani, F.

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Viscor, D.

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Welch, G. R.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Wichmann, J.

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Yavuz, D. D.

D. D. Yavuz and N. A. Proite, “Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency,” Phys. Rev. A76, 041802(R) (2007).
[CrossRef]

Zoller, P.

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

Zubairy, M. S.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

Angew. Chem. Int. Ed. (1)

S. E. Irvine, T. Staudt, E. Rittweger, J. Engelhardt, and S. W. Hell, “Direct light-driven modulation of luminescence from Mn-Doped ZnSe quantum dots,” Angew. Chem. Int. Ed.47(14), 2685–8, (2008).
[CrossRef]

Appl. Phys. B (1)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60, 495 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett.77, 262 (2000).
[CrossRef]

U. Hohenester, F. Troiani, E. Molinari, G. Panzarini, and C. Macchiavello, “Coherent population transfer in coupled semiconductor quantum dots,” Appl. Phys. Lett.77, 1864 (2000).
[CrossRef]

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat.9, 413 (1873).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B: At. Mol. Opt. Phys.39, 3437 (2006).
[CrossRef]

Nat. Biotechnol. (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21, 1347 (2003).
[CrossRef] [PubMed]

Op. Lett. (1)

K. T. Kapale and S. Agarwal, “Subnanoscale resolution for microscopy via coherent population trapping,” Op. Lett.35, 2792 (2010).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (4)

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Optical imaging beyond the diffraction limit via dark states,” Phys. Rev. A78, 013803 (2008).
[CrossRef]

J. Mompart, V. Ahufinger, and G. Birkl, “Coherent patterning of matter waves with subwavelength localization,” Phys. Rev. A79, 053638 (2009).
[CrossRef]

D. Viscor, J. L. Rubio, G. Birkl, J. Mompart, and V. Ahufinger, “Single-site addressing of ultracold atoms beyond the diffraction limit via position-dependent adiabatic passage,” Phys. Rev. A86, 063409 (2012).
[CrossRef]

D. D. Yavuz and N. A. Proite, “Nanoscale resolution fluorescence microscopy using electromagnetically induced transparency,” Phys. Rev. A76, 041802(R) (2007).
[CrossRef]

Phys. Rev. B (1)

J. Fabian and U. Hohenester, “Entanglement distillation by adiabatic passage in coupled quantum dots,” Phys. Rev. B72, 201304(R) (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, and M. D. Lukin, “Coherent quantum optical control with subwavelength resolution,” Phys. Rev. Lett.100, 093005 (2008).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003 (1998).
[CrossRef]

Science (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307, 538 (2005).
[CrossRef] [PubMed]

Science, New Series (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, New Series, 271, 933–937 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1:
Fig. 1:

(a) SLAP technique. Top: Λ-system with pump (P) and Stokes (S) pulses coupling the |1〉↔|2〉 and |3〉↔|2〉 transitions, respectively. The decay rate from |2〉 to |1〉 (|3〉) is γ21 (γ23). Bottom: Pulse temporal sequence, being E the exciting pulse. (b) Schematic setup of the SLAP-based fluorescence microscopy. Note the central node of the pump pulse. DM accounts for dichroic mirrors.

Fig. 2:
Fig. 2:

Ratio between the FWHM using SLAP and CPT techniques as a function of R, for k = 0.1 (blue solid line), k = 0.4 (green dashed line), and k = 0.9 (red dotted line).

Fig. 3:
Fig. 3:

(a) STED technique. Top: Fluorophore energy levels interacting with the exciting (E) and the depletion (D) fields, and their decay rates. Bottom: Pulse temporal sequence. (b) Analytical (solid line) and numerical (crosses) values for the FWHM of the population peak in |1〉, using SLAP, as a function of R. Inset: Spatial profiles of pump (P) and Stokes (S) Rabi frequencies for R = 150. (c) Numerical results of the population p1(x) in |1〉 for SLAP using different values of R, and the population n1(x) in the first excited vibrational level of Rhodamine B for STED typical values (see text).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| D ( x , t ) = [ Ω S * ( x , t ) | 1 Ω P * ( x , t ) | 3 ] / Ω ( x , t ) ,
Ω S ( υ , t ) = Ω S 0 F ( υ , 0 ) e ( t t S ) 2 / σ 2 ,
Ω P ( υ , t ) = Ω P 0 [ F ( υ , δ ) + F ( υ , δ ) ] e ( t t P ) 2 / σ 2 ,
FWHM SLAP = λ 2 NA δ π ( 4 R k 2 1 + 1 ) 1 / 2 ,
FWHM CPT = λ 2 NA 2 δ π ( 2 R + 1 ) 1 / 2 .

Metrics